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Abstract. In this paper, we introduce and analyze a surface finite element discretization of advection-diffusion
equations with uncertain coefficients on evolving hypersurfaces. After stating the unique solvability
of the resulting semidiscrete problem, we prove optimal error bounds for the semidiscrete solution
and Monte Carlo sampling of its expectation in appropriate Bochner spaces. Our theoretical findings
are illustrated by numerical experiments in two and three space dimensions.
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1. Introduction. Surface PDEs, i.e., PDEs on stationary or evolving surfaces, have be-
come a flourishing mathematical field with numerous applications, e.g., in image processing
[27], computer graphics [6], cell biology [22, 38], and porous media [35]. The numerical analysis
of surface PDEs can be traced back to the pioneering paper of Dziuk [16] on the Laplace–
Beltrami equation. Meanwhile there are various extensions to moving hypersurfaces, such as
evolving surface finite element methods [17, 19] or trace finite element methods [37], and an
abstract framework for parabolic equations on evolving Hilbert spaces [1, 2].

Though uncertain parameters are rather the rule than the exception in many applications,
and though PDEs with random coefficients have been intensively studied in recent years (cf.,
e.g., the monographs [33, 31]), the numerical analysis of random surface PDEs still appears
to be in its infancy.

In this paper, we present random evolving surface finite element methods for the advection-
diffusion equation

∂•u−∇Γ · (α∇Γu) + u∇Γ · v = f

on an evolving compact hypersurface Γ(t) ⊂ Rn, n = 2, 3, with a uniformly bounded random
coefficient α and deterministic velocity v on a compact time interval t ∈ [0, T ]. Here ∂• de-
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notes the pathwise material derivative and ∇Γ is the tangential gradient. While the analysis
and numerical analysis of random advection-diffusion equations is well developed in the flat
case [8, 26, 30, 36], to our knowledge, existence, uniqueness, and regularity results for curved
domains were first derived only recently in [15]. Following Dziuk and Elliott [17], the space
discretization is performed by random piecewise linear finite element functions on simplicial
approximations Γh(t) of the surface Γ(t), t ∈ [0, T ]. We present optimal error estimates for the
resulting semidiscrete scheme which then provide corresponding error estimates for expecta-
tion values and Monte Carlo approximations. Application of efficient solution techniques, such
as adaptivity [14], multigrid methods [28], and multilevel Monte Carlo techniques [3, 9, 10], is
very promising but beyond the scope of this paper. In our numerical experiments, we inves-
tigate a corresponding fully discrete scheme based on an implicit Euler method and observe
optimal convergence rates.

The paper is organized as follows. We start by setting up some notation, the notion of
hypersurfaces, function spaces, and material derivatives in order to derive a weak formulation
of our problem according to [15]. Section 3 is devoted to random evolving surface finite
element method discretization in the spirit of [17] leading to the precise formulation and well-
posedness of our semidiscretization in space presented in section 4. Optimal error estimates for
the approximate solution, its expectation, and a Monte Carlo approximation are contained in
section 5. The paper concludes with numerical experiments in two and three space dimensions
suggesting that our optimal error estimates extend to corresponding fully discrete schemes.

2. Random advection-diffusion equations on evolving hypersurfaces. Let (Ω,F ,P) be
a complete probability space with sample space Ω, a σ-algebra of events F , and a probability
P : F → [0, 1]. In addition, we assume that L2(Ω) is a separable space. For this assumption,
it suffices to assume that (Ω,F ,P) is separable [24, Exercise 43.(1)]. We consider a fixed finite
time interval [0, T ], where T ∈ (0,∞). Furthermore, we denote by D((0, T );V ) the space of
infinitely differentiable functions with values in a Hilbert space V and compact support in
(0, T ).

2.1. Hypersurfaces. We first recall some basic notions and results concerning hypersur-
faces and Sobolev spaces on hypersurfaces. We refer the reader to [12, 20] for more details.

Let Γ ⊂ Rn+1 (n = 1, 2) be a C3-compact, connected, orientable, n-dimensional hypersur-
face without boundary. For a function f : Γ → R allowing for a differentiable extension f̃ to
an open neighborhood of Γ in Rn+1, we define the tangential gradient by

(2.1) ∇Γf(x) := ∇f̃(x)−∇f̃(x) · ν(x)ν(x), x ∈ Γ,

where ν(x) denotes the unit normal to Γ.
Note that∇Γf(x) is the orthogonal projection of∇f̃ onto the tangent space to Γ at x (thus

a tangential vector). It depends only on the values of f̃ on Γ [20, Lemma 2.4], which makes
definition (2.1) independent of the extension f̃ . The tangential gradient is a vector-valued
quantity, and for its components we use the notation ∇Γf(x) = (D1f(x), . . . , Dn+1f(x)). The
Laplace–Beltrami operator is defined by

∆Γf(x) = ∇Γ · ∇Γf(x) =
n+1∑
i=1

DiDif(x), x ∈ Γ.
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In order to prepare weak formulations of PDEs on Γ, we now introduce Sobolev spaces on
surfaces. To this end, let L2(Γ) denote the Hilbert space of all measurable functions f : Γ→ R
such that ‖f‖L2(Γ) :=

(∫
Γ |f(x)|2

)1/2
is finite. We say that a function f ∈ L2(Γ) has a weak

partial derivative gi = Dif ∈ L2(Γ) (i = {1, . . . , n + 1}) if for every function φ ∈ C1(Γ) and
every i there holds that ∫

Γ
fDiφ = −

∫
Γ
φgi +

∫
Γ
fφHνi,

where H = −∇Γ · ν denotes the mean curvature. The Sobolev space H1(Γ) is then defined by

H1(Γ) = {f ∈ L2(Γ) | Dif ∈ L2(Γ), i = 1, . . . , n+ 1}

with the norm ‖f‖H1(Γ) = (‖f‖2L2(Γ) + ‖∇Γf‖2L2(Γ))
1/2.

For a description of evolving hypersurfaces, we consider two approaches, starting with
evolutions according to a given velocity field v. Here we assume that Γ(t) satisfies the same
properties as Γ(0) = Γ for every t ∈ [0, T ], and we set Γ0 := Γ(0). Furthermore, we assume
the existence of a flow, i.e., of a diffeomorphism

Φ0
t (·) := Φ(·, t) : Γ0 → Γ(t), Φ ∈ C1([0, T ], C1(Γ0)n+1) ∩ C0([0, T ], C3(Γ0)n+1),

that satisfies

(2.2)
d

dt
Φ0
t (·) = v(t,Φ0

t (·)), Φ0
0(·) = Id(·),

with a C2-velocity field v : [0, T ]× Rn+1 → Rn+1 with uniformly bounded divergence

(2.3) |∇Γ(t) · v(t)| ≤ C ∀t ∈ [0, T ].

It is sometimes convenient to alternatively represent Γ(t) as the zero level set of a suitable
function defined on a subset of the ambient space Rn+1. More precisely, under the given
regularity assumptions for Γ(t), it follows by the Jordan–Brouwer theorem that Γ(t) is the
boundary of an open bounded domain. Thus, Γ(t) can be represented as the zero level set

Γ(t) = {x ∈ N (t) | d(x, t) = 0}, t ∈ [0, T ],

of a signed distance function d = d(x, t) defined on an open neighborhood N (t) of Γ(t) such
that |∇d| 6= 0 for t ∈ [0, T ]. Note that d, dt, dxi , dxixj ∈ C1(NT ) with i, j = 1, . . . , n+ 1 holds
for

NT :=
⋃

t∈[0,T ]

N (t)× {t}.

We also choose N (t) such that for every x ∈ N (t) and t ∈ [0, T ] there exists a unique
p(x, t) ∈ Γ(t) such that

(2.4) x = p(x, t) + d(x, t)ν(p(x, t), t)

and fix the orientation of Γ(t) by choosing the normal vector field ν(x, t) := ∇d(x, t). Note
that the constant extension of a function η(·, t) : Γ(t) → R to N (t) in the normal direction
is given by η−l(x, t) = η(p(x, t), t), p ∈ N (t). Later, we will use (2.4) to define the lift of
functions on approximate hypersurfaces.
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2.2. Function spaces. In this section, we define Bochner-type function spaces of random
functions that are defined on evolving spaces. The definition of these spaces is taken from [15]
and uses the idea from Alphonse, Elliott, and Stinner [1] to map each domain at time t to the
fixed initial domain Γ0 by a pull-back operator using the flow Φ0

t . Note that this approach is
similar to the Arbitrary Lagrangian Eulerian (ALE) framework.

For each t ∈ [0, T ], let us define

V (t) := L2(Ω, H1(Γ(t))) ∼= L2(Ω)⊗H1(Γ(t)),(2.5)

H(t) := L2(Ω, L2(Γ(t))) ∼= L2(Ω)⊗ L2(Γ(t)),(2.6)

where the isomorphisms hold because all considered spaces are separable Hilbert spaces (see
[39]). The dual space of V (t) is the space V ∗(t) = L2(Ω, H−1(Γ(t))), where H−1(Γ(t)) is the
dual space of H1(Γ(t)). Using the tensor product structure of these spaces [23, Lemma 4.34],
it follows that V (t) ⊂ H(t) ⊂ V ∗(t) is a Gelfand triple for every t ∈ [0, T ].

For convenience, we will often (but not always) write u(ω, x) instead of u(ω)(x), which is
justified by the tensor structure of the spaces.

For an evolving family of Hilbert spaces X = (X(t))t∈[0,T ], such as V = (V (t))t∈[0,T ]

or H = (H(t))t∈[0,T ], we connect the space X(t) for fixed t ∈ [0, T ] with the initial space
X(0) by using a family of so-called pushforward maps φt : X(0) → X(t), satisfying certain
compatibility conditions stated in [1, Definition 2.4]. More precisely, we use its inverse map
φ−t : X(t)→ X(0), called a pullback map, to define general Bochner-type spaces of functions
defined on evolving spaces as follows (see [1, 15]):

L2
X :=

{
u : [0, T ] 3 t 7→ (ū(t), t) ∈

⋃
s∈[0,T ]

X(s)× {s} | φ−(·)ū(·) ∈ L2(0, T ;X(0))

}
,

L2
X∗ :=

{
f : [0, T ] 3 t 7→ (f̄(t), t) ∈

⋃
s∈[0,T ]

X∗(s)× {s} | φ−(·)f̄(·) ∈ L2(0, T ;X∗(0))

}
.

In the following, we will identify u(t) = (u(t); t) with u(t).
From [1, Lemma 2.15], it follows that L2

X∗ and (L2
X)∗ are isometrically isomorphic. The

spaces L2
X and L2

X∗ are separable Hilbert spaces [1, Corollary 2.11] with the inner product
defined as

(u, v)L2
X

=

∫ T

0
(u(t), v(t))X(t) dt, (f, g)L2

X∗
=

∫ T

0
(f(t), g(t))X∗(t) dt.

For the evolving family H defined in (2.6), we define the pullback operator φ−t : H(t)→
H(0) for fixed t ∈ [0, T ] and each u ∈ H(t) by

(φ−tu)(ω, x) := u(ω,Φ0
t (x)), x ∈ Γ0 = Γ(0), ω ∈ Ω,

utilizing the parametrization Φ0
t of Γ(t) over Γ0. Exploiting V (t) ⊂ H(t), the pullback operator

φ−t : V (t)→ V (0) is defined by restriction. It follows from [15, Lemma 3.5] that the resulting
spaces L2

V , L2
V ∗ , and L2

H are well-defined and

L2
V ⊂ L2

H ⊂ L2
V ∗

is a Gelfand triple.
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2.3. Material derivative. Following [15], we introduce a material derivative of sufficiently
smooth random functions that takes spatial movement into account.

First let us define the spaces of pushed-forward continuously differentiable functions

CjX := {u ∈ L2
X | φ−(·)u(·) ∈ Cj ([0, T ], X(0))} for j ∈ {0, 1, 2}.

For u ∈ C1
V , the material derivative ∂•u ∈ C0

V is defined by

(2.7) ∂•u := φt

(
d

dt
φ−tu

)
= ut +∇u · v.

More precisely, the material derivative of u is defined via a smooth extension ũ of u to NT
with well-defined derivatives ∇ũ and ũt and subsequent restriction to

GT :=
⋃
t

Γ(t)× {t} ⊂ NT .

Since, due to the smoothness of Γ(t) and Φt
0, this definition is independent of the choice of a

particular extension ũ, we simply write u in (2.7).

Remark 2.1. Replacing classical derivatives in time by weak derivatives leads to a weak
material derivative ∂•u ∈ L2

V ∗ . It coincides with the strong material derivative for sufficiently
smooth functions. As we will concentrate on the smooth case later, we omit a precise definition
here and refer the reader to [15, Definition 3.9] for details.

2.4. Weak formulation and well-posedness. We consider an initial value problem for
an advection-diffusion equation on the evolving surface Γ(t), t ∈ [0, T ], which in strong form
reads as

(2.8)
∂•u−∇Γ · (α∇Γu) + u∇Γ · v = f,

u(0) = u0.

Here the diffusion coefficient α and the initial function u0 are random functions, and we set
f ≡ 0 for ease of presentation.

We will consider weak solutions of (2.8) from the space

(2.9) W (V,H) := {u ∈ L2
V | ∂•u ∈ L2

H},

where ∂•u stands for the weak material derivative. W (V,H) is a separable Hilbert space with
the inner product defined by

(u, v)W (V,H) =

∫ T

0

∫
Ω

(u, v)H1(Γ(t)) +

∫ T

0

∫
Ω

(∂•u, ∂•v)L2(Γ(t)).

Now a weak solution of (2.8) is a solution of the following problem.

Problem 2.1 (weak form of the random advection-diffusion equation on {Γ(t)}). Find u ∈
W (V,H) that pointwise satisfies the initial condition u(0) = u0 ∈ V (0) and

(2.10)

∫
Ω

∫
Γ(t)
∂•u(t)ϕ+

∫
Ω

∫
Γ(t)
α(t)∇Γu(t) · ∇Γϕ+

∫
Ω

∫
Γ(t)
u(t)ϕ∇Γ · v(t) = 0

for every ϕ ∈ L2(Ω, H1(Γ(t))) and a.e. t ∈ [0, T ].
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Existence and uniqueness can be stated under the following assumption.

Assumption 2.1. The diffusion coefficient α satisfies the following conditions:
(a) α : Ω× GT → R is an F ⊗ B(GT )-measurable function;
(b) α(ω, ·, ·) ∈ C1(GT ) holds for P-a.e ω ∈ Ω, which implies the boundedness of |∂•α(ω)|

on GT , and we assume that this bound is uniform in ω ∈ Ω;
(c) α is uniformly bounded from above and below in the sense that there exist positive

constants αmin and αmax such that

(2.11) 0 < αmin ≤ α(ω, x, t) ≤ αmax <∞ ∀(x, t) ∈ GT

holds for P-a.e. ω ∈ Ω,
and the initial function satisfies u0 ∈ L2(Ω, H1(Γ0)).

The following proposition is a consequence of [15, Theorem 4.9].

Proposition 2.1. Let Assumption 2.1 hold. Then, under the given assumptions on {Γ(t)},
there is a unique solution u ∈W (V,H) of Problem 2.1 and we have the a priori bound

‖u‖W (V,H) ≤ C‖u0‖V (0)

with some C ∈ R.

The following assumption of the diffusion coefficient will ensure the regularity of the
solution.

Assumption 2.2. Assume that there exists a constant C independent of ω ∈ Ω such that

|∇Γα(ω, x, t)| ≤ C ∀(x, t) ∈ GT

holds for P-almost all ω ∈ Ω.

Note that (2.11) and Assumption 2.2 imply that ‖α(ω, t)‖C1(Γ(t)) is uniformly bounded in
ω ∈ Ω. This will be used later to prove an H2(Γ(t)) bound.

From now on, we will assume that Assumptions 2.1 and 2.2 are satisfied and, additionally,
that u has a pathwise strong material derivative, i.e., that u(ω) ∈ C1

V holds for all ω ∈ Ω.

Remark 2.2. The uniformity condition (2.11) is not valid for lognormal random fields.
Well-posedness for problems with such random coefficients is stated in [15], assuming the
existence of a suitable KL expansion. Sample regularity and differentiability, as typically
needed for discretization error estimates, is still open, except for the special case of a sphere
[29]. Here the arguments highly rely on spherical harmonic functions that allow for an explicit
representation of the Gaussian random field, which in turn provides suitable control of the
truncation error of KL expansions and regularity of samples. More general approaches to
lognormal random fields are the subject of current investigations but would exceed the scope
of this paper.

In order to derive a more convenient formulation of Problem 2.1 with identical solution
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and test space, we introduce the time-dependent bilinear forms

(2.12)

m(u, ϕ) :=

∫
Ω

∫
Γ(t)
uϕ, g(v;u, ϕ) :=

∫
Ω

∫
Γ(t)
uϕ∇Γ · v,

a(u, ϕ) :=

∫
Ω

∫
Γ(t)
α∇Γu · ∇Γϕ, b(v;u, ϕ) :=

∫
Ω

∫
Γ(t)

B(ω, v)∇Γu · ∇Γϕ

for u, ϕ ∈ L2(Ω, H1(Γ(t))) and each t ∈ [0, T ]. The tensor B in the definition of b(v;u, ϕ)
takes the form

B(ω, v) = (∂•α+ α∇Γ · v)Id− 2αDΓ(v)

with Id denoting the identity in (n+1)× (n+1) and (DΓv)ij = Djv
i. Note that (2.3) and the

uniform boundedness of ∂•α on GT imply that |B(ω, v)| ≤ C holds P-a.e. ω ∈ Ω with some
C ∈ R.

The transport formula for the differentiation of the time-dependent surface integral then
reads (see, e.g., [15]) as

d

dt
m(u, ϕ) = m(∂•u, ϕ) +m(u, ∂•ϕ) + g(v;u, ϕ),(2.13)

where the equality holds a.e. in [0, T ]. As a consequence of (2.13), Problem 2.1 is equivalent
to the following formulation with identical solution and test space.

Problem 2.2 (weak form of the random advection-diffusion equation on {Γ(t)}). Find u ∈
W (V,H) that pointwise satisfies the initial condition u(0) = u0 ∈ V (0) and

(2.14)
d

dt
m(u, ϕ) + a(u, ϕ) = m(u, ∂•ϕ) ∀ϕ ∈W (V,H).

This formulation will be used in what follows.

3. Evolving simplicial surfaces. As a first step towards a discretization of the weak formu-
lation (2.14), we now consider simplicial approximations of the evolving surface Γ(t), t ∈ [0, T ].
Let Γh,0 be an approximation of Γ0 consisting of nondegenerate simplices {Ej,0}Nj=1 =: Th,0
with vertices {Xj,0}Jj=1 ⊂ Γ0 such that the intersection of two different simplices is a com-
mon lower-dimensional simplex or is empty. For t ∈ [0, T ], we let the vertices Xj(0) = Xj,0

evolve with the smooth surface velocity X ′j(t) = v(Xj(t), t), j = 1, . . . , J , and consider the

approximation Γh(t) of Γ(t) consisting of the corresponding simplices {Ej(t)}Mj=1 =: Th(t).
We assume that the shape regularity of Th(t) holds uniformly in t ∈ [0, T ] and that Th(t) is
quasi-uniform, uniformly in time, in the sense that

h := sup
t∈(0,T )

max
E(t)∈Th(t)

diamE(t) ≥ inf
t∈(0,T )

min
E(t)∈Th(t)

diamE(t) ≥ ch

holds with some c ∈ R. We also assume that Γh(t) ⊂ N (t) for t ∈ [0, T ] and, in addition to
(2.4), that for every p ∈ Γ(t) there is a unique x(p, t) ∈ Γh(t) such that

(3.1) p = x(p, t) + d(x(p, t), t)ν(p, t).
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Note that Γh(t) can be considered an interpolation of Γ(t) in {Xj(t)}Jj=1, and a discrete
analogue of the space time domain GT is given by

GhT :=
⋃
t

Γh(t)× {t}.

We define the tangential gradient of a sufficiently smooth function ηh : Γh(t) → R in an
elementwise sense; i.e., we set

∇Γh
ηh|E = ∇ηh −∇ηh · νhνh, E ∈ Th(t).

Here νh stands for the elementwise outward unit normal to E ⊂ Γh(t). We use the notation
∇Γh

ηh = (Dh,1ηh, . . . , Dh,n+1ηh).
We define the discrete velocity Vh of Γh(t) by interpolation of the given velocity v; i.e., we

set

Vh(X(t), t) := Ĩhv(X(t), t), X(t) ∈ Γh(t),

with Ĩh denoting piecewise linear interpolation in {Xj(t)}Jj=1.
We consider the Gelfand triple on Γh(t),

(3.2) L2(Ω, H1(Γh(t))) ⊂ L2(Ω, L2(Γh(t))) ⊂ L2(Ω, H−1(Γh(t))),

and denote

Vh(t) := L2(Ω, H1(Γh(t))) and Hh(t) := L2(Ω, L2(Γh(t))).

As in the continuous case, this leads to the following Gelfand triple of evolving Bochner–
Sobolev spaces:

(3.3) L2
Vh(t) ⊂ L

2
Hh(t) ⊂ L

2
V∗h(t).

The discrete velocity Vh induces a discrete strong material derivative in terms of an ele-
mentwise version of (2.7); i.e., for sufficiently smooth functions φh ∈ L2

Vh and any E(t) ∈ Γh(t),
we set

(3.4) ∂•hφh|E(t) := (φh,t + Vh · ∇φh)|E(t).

We define discrete analogues to the bilinear forms introduced in (2.12) on Vh(t) × Vh(t)
according to

mh(uh, ϕh) :=

∫
Ω

∫
Γh(t)

uhϕh, gh(Vh;uh, ϕh) :=

∫
Ω

∫
Γh(t)

uhϕh∇Γh
· Vh,

ah(uh, ϕh) :=

∫
Ω

∫
Γh(t)

α−l∇Γh
uh · ∇Γh

ϕh,

bh(Vh;φ,Uh) :=
∑

E(t)∈Th(t)

∫
Ω

∫
E(t)

Bh(ω, Vh)∇Γh
φ · ∇Γh

Uh
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involving the tensor

Bh(ω, Vh) = (∂•hα
−l + α−l∇Γh

· Vh)Id− 2α−lDh(Vh)

denoting (Dh(Vh))ij = Dh,jV
i
h . Here we denote

(3.5) α−l(ω, x, t) := α(ω, p(x, t), t) ω ∈ Ω, (x, t) ∈ GhT ,

exploiting {Γh(t)} ⊂ N (t) and (2.4). Later, α−l will be called the inverse lift of α.
Note that α−l satisfies a discrete version of Assumptions 2.1 and 2.2. In particular, α−l

is an F ⊗ B(GhT )-measurable function, α−l(ω, ·, ·)|ET
∈ C1(ET ) for all space-time elements

ET :=
⋃
tE(t)× {t}, and αmin ≤ α−l(ω, x, t) ≤ αmax for all ω ∈ Ω, (x, t) ∈ GhT .

The next lemma provides a uniform bound for the divergence of Vh and the norm of the
tensor Bh that follows from the geometric properties of Γh(t) in analogy to [21, Lemma 3.3].

Lemma 3.1. Under the above assumptions on {Γh(t)}, it holds that

sup
t∈[0,T ]

(
‖∇Γh

· Vh‖L∞(Γh(t)) + ‖Bh‖L2(Ω,L∞(Γh(t)))

)
≤ c sup

t∈[0,T ]
‖v(t)‖C2(NT )

with a constant c depending only on the initial hypersurface Γ0 and the uniform shape regularity
and quasi uniformity of Th(t).

Since the probability space does not depend on time, the discrete analogue of the corre-
sponding transport formulae holds, where the discrete material velocity and discrete tangential
gradients are understood in an elementwise sense. The resulting discrete result is stated, for
example, in [19, Lemma 4.2]. Lemma 3.2 follows by integration over Ω.

Lemma 3.2 (transport lemma for triangulated surfaces). Let {Γh(t)} be a family of triangu-
lated surfaces evolving with discrete velocity Vh. Let φh, ηh be time-dependent functions such
that the following quantities exist. Then

d

dt

∫
Ω

∫
Γh(t)

φh =

∫
Ω

∫
Γh(t)

∂•hφh + φh∇Γh
· Vh.

In particular,

(3.6)
d

dt
mh(φh, ηh) = m(∂•hφh, ηh) +m(φh, ∂

•
hηh) + gh(Vh;φh, ηh).

4. Evolving surface finite element methods. Following [17], we now introduce an evolv-
ing surface finite element method (ESFEM) discretization of Problem 2.2.

4.1. Finite elements on simplicial surfaces. For each t ∈ [0, T ], we define the evolving
finite element space

(4.1) Sh(t) := {η ∈ C(Γh(t)) | ηE is affine ∀E ∈ Th(t)}.

We denote by {χj(t)}j=1,...,J the nodal basis of Sh(t), i.e.,χj(Xi(t), t)=δij (Kronecker-δ).
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These basis functions satisfy the transport property [19, Lemma 4.1]

(4.2) ∂•hχj = 0.

We consider the following Gelfand triple:

(4.3) Sh(t) ⊂ Lh(t) ⊂ S∗h(t),

where all three spaces algebraically coincide but are equipped with different norms inherited
from the corresponding continuous counterparts, i.e.,

Sh(t) := (Sh(t), ‖ · ‖H1(Γh(t))) and Lh(t) := (Sh(t), ‖ · ‖L2(Γh(t))).

The dual space S∗h(t) consists of all continuous linear functionals on Sh(t) and is equipped
with the standard dual norm

‖ψ‖S∗h(t) := sup
{η∈Sh(t) | ‖η‖H1(Γh(t))=1}

|ψ(η)|.

Note that all three norms are equivalent as norms on finite-dimensional spaces, which implies
that (4.3) is the Gelfand triple. As a discrete counterpart of (3.2), we introduce the Gelfand
triple

(4.4) L2(Ω, Sh(t)) ⊂ L2(Ω, Lh(t)) ⊂ L2(Ω, S∗h(t)).

Setting

Vh(t) := L2(Ω, Sh(t)), Hh(t) := L2(Ω, Lh(t)), V ∗h (t) := L2(Ω, S∗h(t)),

we obtain the finite element analogue

(4.5) L2
Vh(t) ⊂ L

2
Hh(t) ⊂ L

2
V ∗h (t)

of the Gelfand triple (3.3) of evolving Bochner–Sobolev spaces. Let us note that since the
sample space Ω is independent of time, it holds that

(4.6) L2(Ω, L2
X) ∼= L2(Ω)⊗ L2

X
∼= L2

L2(Ω,X)

for any evolving family of separable Hilbert spaces X (see, e.g., section 3). We will exploit this
isomorphism for X = Sh in the following definition of the solution space for the semidiscrete
problem, where we will rather consider the problem in a pathwise sense.

We define the solution space for the semidiscrete problem as the space of functions that
are smooth for each path in the sense that φh(ω) ∈ C1

Sh
holds for all ω ∈ Ω. Hence, ∂•hφh is

defined pathwise for pathwise smooth functions. In addition, we require ∂•hφh(t) ∈ Hh(t) to
define the semidiscrete solution space

Wh(Vh, Hh) := L2(Ω, C1
Sh

).

The scalar product of this space is defined by

(Uh, φh)Wh(Vh,Hh) :=

∫ T

0

∫
Ω

(Uh, φh)H1(Γh(t)) +

∫ T

0

∫
Ω

(∂•hUh, ∂
•
hφh)L2(Γh(t))

with the associated norm ‖ · ‖Wh(Vh,Hh).
The semidiscrete approximation of Problem 2.2 on {Γh(t)} now reads as follows.
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Problem 4.1 (ESFEM discretization in space). Find Uh ∈Wh(Vh, Hh) that pointwise satis-
fies the initial condition Uh(0) = Uh,0 ∈ Vh(0) and

(4.7)
d

dt
mh(Uh, ϕ) + ah(Uh, ϕ) = mh(Uh, ∂

•
hϕ) ∀ϕ ∈Wh(Vh, Hh).

In contrast to W (V,H), the semidiscrete space Wh(Vh, Hh) is not complete so that the
proof of the following existence and stability result requires a different kind of argument.

Theorem 4.1. The semidiscrete problem (4.7) has a unique solution Uh ∈ Wh(Vh, Hh)
which satisfies the stability property

(4.8) ‖Uh‖W (Vh,Hh) ≤ C‖Uh,0‖Vh(0)

with a mesh-independent constant C depending only on T , αmin, and the bound for ‖∇Γh
·Vh‖∞

from Lemma 3.1.

Proof. In analogy to subsection 2.4, Problem 4.1 is equivalent to finding Uh ∈Wh(Vh, Hh)
that pointwise satisfies the initial condition Uh(0) = Uh,0 ∈ Vh(0) and

(4.9) mh(∂•hUh, ϕ) + ah(Uh, ϕ) + gh(Vh;Uh, ϕ) = 0

for every ϕ ∈ L2(Ω, Sh(t)) and a.e. t ∈ [0, T ].
Let ω ∈ Ω be arbitrary but fixed. We start with considering the deterministic pathwise

problem of finding Uh(ω) ∈ C1
Sh

such that Uh(ω; 0) = Uh,0(ω) and

(4.10)

∫
Γh(t)

∂•hUh(ω)ϕ+

∫
Γh(t)

α−l(ω)∇Γh
Uh(ω) · ∇Γh

ϕ+

∫
Γh(t)

Uh(ω)ϕ∇Γh
· Vh = 0

holds for all ϕ ∈ Sh(t) and a.e. t ∈ [0, T ]. Following Dziuk and Elliott [19, section 4.6], we
insert the nodal basis representation

(4.11) Uh(ω, t, x) =

J∑
j=1

Uj(ω, t)χj(x, t)

into (4.10) and take ϕ = χi(t) ∈ Sh(t), i = 1, . . . , J , as test functions. Now the transport
property (4.2) implies

J∑
j=1

∂

∂t
Uj(ω)

∫
Γh(t)

χjχi +

J∑
j=1

Uj(ω)

∫
Γh(t)

α−l(ω)∇Γh
χj · ∇Γh

χi(4.12)

+
J∑
j=1

Uj(ω)

∫
Γh(t)

χjχi∇Γh
· Vh = 0.

We introduce the evolving mass matrix M(t) with coefficients

M(t)ij :=

∫
Γh(t)

χi(t)χj(t)
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and the evolving stiffness matrix S(ω, t) with coefficients

S(ω, t)ij :=

∫
Γh(t)

α−l(ω, t)∇Γh
χj(t)∇Γh

χi(t).

From [19, Proposition 5.2], it follows that

dM

dt
= M ′,

where

M ′(t)ij :=

∫
Γh(t)

χj(t)χi(t)∇Γh
· Vh(t).

Therefore, we can write (4.12) as the linear initial value problem

(4.13)
∂

∂t
(M(t)U(ω, t)) + S(ω, t)U(ω, t) = 0, U(ω, 0) = U0(ω),

for the unknown vector U(ω, t) = (Uj(ω, t))
J
i=1 of coefficient functions. As in [19], there exists

a unique pathwise semidiscrete solution Uh(ω) ∈ C1
Sh

since the matrix M(t) is uniformly
positive definite on [0, T ] and the stiffness matrix S(ω, t) is positive semidefinite for every
ω ∈ Ω. Note that the time regularity of Uh(ω) follows from M , S(ω) ∈ C1(0, T ), which in
turn is a consequence of our assumptions on the time regularity of the evolution of Γh(t).

The next step is to prove the measurability of the map Ω 3 ω 7→ Uh(ω) ∈ C1
Sh

. On C1
Sh

we
consider the Borel σ-algebra induced by the norm

(4.14) ‖Uh‖2C1
Sh

:=

∫ T

0
‖Uh(t)‖2H1(Γh(t)) + ‖∂•hUh(t)‖2L2(Γh(t)).

We write (4.12) in the following form:

∂

∂t
U(ω, t) +A(ω, t)U(ω, t) = 0, U(ω, 0) = U0(ω),

where
A(ω, t) := M−1(t)

(
M ′(t) + S(ω, t)

)
.

As Uh,0 ∈ Vh(0), the function ω 7→ U0(ω) is measurable, and since α−l is an F ⊗ B(GhT )-
measurable function, it follows from Fubini’s theorem [24, section 36, Theorem C] that

Ω 3 ω 7→ (U0(ω), A(ω)) ∈ RJ ×
(
C1
(
[0, T ],RJ×J

)
, ‖ · ‖∞

)
is a measurable function. Utilizing Gronwall’s lemma, it can be shown that the mapping

RJ ×
(
C1
(
[0, T ],RJ×J

)
, ‖ · ‖∞

)
3 (U0, A) 7→ U ∈

(
C1
(
[0, T ],RJ

)
, ‖ · ‖∞

)
is continuous. Furthermore, the mapping(

C1
(
[0, T ],RJ

)
, ‖ · ‖∞

)
3 U 7→ U ∈

(
C1
(
[0, T ],RJ

)
, ‖ · ‖2

)
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with

‖U‖22 :=

∫ T

0
‖U(t)‖2RJ +

∥∥∥∥ ddtU(t)

∥∥∥∥2

RJ

is continuous. Exploiting that the triangulation Th(t) of Γh(t) is quasi-uniform, uniformly in
time, the continuity of the linear mapping(

C1
(
[0, T ],RJ

)
, ‖ · ‖2

)
3 U 7→ Uh ∈ C1

Sh

follows from the triangle inequality and the Cauchy–Schwarz inequality. We finally conclude
that the function

Ω 3 ω 7→ Uh(ω) ∈ C1
Sh

is measurable as a composition of measurable and continuous mappings.
The next step is to prove the stability property (4.8). For each fixed ω ∈ Ω, pathwise

stability results from [19, Lemma 4.3] imply that

(4.15) ‖Uh(ω)‖2C1
Sh

≤ C‖Uh,0(ω)‖2H1(Γh(0)),

where C = C(αmin, αmax, Vh, T,GTh ) is independent of ω and Uh,0(x) ∈ L2(Ω). Integrating
(4.15) over Ω, we get the bound

‖Uh‖W (Vh,Hh) = ‖Uh‖2L2(Ω,C1
Sh

) ≤ C‖Uh,0‖
2
Vh(0).

In particular, we have Uh ∈Wh(Vh, Hh).
It is left to show that Uh solves (4.9) and thus Problem 4.1. Exploiting the tensor product

structure of the test space L2(Ω, Sh(t)) ∼= L2(Ω)⊗ Sh(t) (see (4.6)), we find that

{ϕh(x, t)η(ω) |ϕh(t) ∈ Sh(t), η ∈ L2(Ω)} ⊂ L2(Ω)⊗ Sh(t)

is a dense subset of L2(Ω, Sh(t)). Taking any test function ϕh(x, t)η(ω) from this dense subset,
we first insert ϕh(x, t) ∈ Sh(t) into the pathwise problem (4.10), then multiply with η(ω), and
finally integrate over Ω to establish (4.9). This completes the proof.

4.2. Lifted finite elements. We exploit (3.1) to define the lift ηlh(·, t) : Γ(t)→ R of func-
tions ηh(·, t) : Γh(t)→ R by

ηlh(p, t) := ηh(x(p, t)), p ∈ Γ(t).

Conversely, (2.4) is utilized to define the inverse lift

η−l(·, t) : Γh(t)→ R

of functions η(·, t) : Γ(t)→ R by

η−l(x, t) := η(p(x, t), t), x ∈ Γh(t).

These operators are inverse to each other, i.e., (η−l)l = (ηl)−l = η, and, taking characteristic
functions ηh, each element E(t) ∈ Th(t) has its unique associated lifted element e(t) ∈ T lh(t).
Recall that the inverse lift α−1 of the diffusion coefficient α was already introduced in (3.5).

The next lemma states equivalence relations between corresponding norms on Γ(t) and
Γh(t) that follow directly from their deterministic counterparts (see [16]).
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Lemma 4.2. Let t ∈ [0, T ], ω ∈ Ω, and let ηh(ω) : Γh(t) → R with the lift ηlh(ω) : Γ → R.
Then, for each plane simplex E ⊂ Γh(t) and its curvilinear lift e ⊂ Γ(t), there is a constant
c > 0 independent of E, h, t, and ω such that

1

c
‖ηh‖L2(Ω,L2(E)) ≤ ‖ηlh‖L2(Ω,L2(e)) ≤ c ‖ηh‖L2(Ω,L2(E)),(4.16)

1

c
‖∇Γh

ηh‖L2(Ω,L2(E)) ≤ ‖∇Γη
l
h‖L2(Ω,L2(e)) ≤ c ‖∇Γh

ηh‖L2(Ω,L2(E)),(4.17)

1

c
‖∇2

Γh
ηh‖L2(Ω,L2(E)) ≤ c‖∇2

Γη
l
h‖L2(Ω,L2(e)) + ch‖∇Γη

l
h‖L2(Ω,L2(e))(4.18)

if the corresponding norms are finite.

The motion of the vertices of the triangles E(t) ∈ {Th(t)} induces a discrete velocity vh
of the surface {Γ(t)}. More precisely, for a given trajectory X(t) of a point on {Γh(t)} with
velocity Vh(X(t), t), the associated discrete velocity vh in Y (t) = p(X(t), t) on Γ(t) is defined
by

(4.19) vh(Y (t), t) = Y ′(t) =
∂p

∂t
(X(t), t) + Vh(X(t), t) · ∇p(X(t), t).

The discrete velocity vh gives rise to a discrete material derivative of functions ϕ ∈ L2
V in an

elementwise sense; i.e., we set

∂•hϕ|e(t) := (ϕt + vh · ∇ϕ)|e(t)

for all e(t) ∈ T lh(t), where ϕt and ∇ϕ are defined via a smooth extension, analogous to
definition (2.7).

We introduce a lifted finite element space by

Slh(t) := {ηl ∈ C(Γ(t)) | η ∈ Sh(t)}.

Note that there is a unique correspondence between each element η ∈ Sh(t) and ηl ∈ Slh(t).
Furthermore, one can show that for every φh ∈ Sh(t) it holds that

(4.20) ∂•h(φlh) = (∂•hφh)l.

Therefore, by (4.2), we get
∂•hχ

l
j = 0.

We finally state an analogue to the transport lemma, Lemma 3.2, on simplicial surfaces.

Lemma 4.3 (transport lemma for smooth triangulated surfaces). Let Γ(t) be an evolving sur-
face decomposed into curved elements {Th(t)} whose edges move with velocity vh. Then the
following relations hold for functions ϕh, uh such that the following quantities exist:

d

dt

∫
Ω

∫
Γ(t)

ϕh =

∫
Ω

∫
Γ(t)

∂•hϕh + ϕh∇Γ · vh

and

(4.21)
d

dt
m(ϕ, uh) = m(∂•hϕh, uh) +m(ϕh, ∂

•
huh) + g(vh;ϕh, uh).
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Remark 4.1. Let Uh be the solution of the semidiscrete problem, Problem 4.1, with initial
condition Uh(0) = Uh,0, and let uh = U lh with uh(0) = uh,0 = U lh,0 be its lift. Then, as a
consequence of Theorem 4.1, (4.20), and Lemma 4.2, the estimate

(4.22) ‖uh‖W (V,H) ≤ C0‖uh(0)‖V (0)

holds with C0 depending on the constants C and c appearing in Theorem 4.1 and Lemma 4.2,
respectively.

5. Error estimates.

5.1. Interpolation and geometric error estimates. In this section, we formulate the re-
sults concerning the approximation of the surface, which are in the deterministic setting
proved in [17, 19]. Our goal is to prove that they still hold in the random case. The main
task is to keep track of constants that appear and show that they are independent of realiza-
tion. This conclusion mainly follows from assumption (2.11) about the uniform distribution
of the diffusion coefficient. Furthermore, we need to show that the extended definitions of the
interpolation operator and Ritz projection operator are integrable with respect to P.

We start with an interpolation error estimate for functions η ∈ L2(Ω, H2(Γ(t))), where
the interpolation Ihη is defined as the lift of piecewise linear nodal interpolation Ĩhη ∈
L2(Ω, Sh(t)). Note that Ĩh is well-defined because the vertices (Xj(t))

J
j=1 of Γh(t) lie on

the smooth surface Γ(t) and n = 2, 3.

Lemma 5.1. The interpolation error estimate

‖η − Ihη‖H(t) + h‖∇Γ(η − Ihη)‖H(t)

≤ ch2
(
‖∇2

Γη‖H(t) + h‖∇Γη‖H(t)

)(5.1)

holds for all η ∈ L2(Ω, H2(Γ(t))) with a constant c depending only on the shape regularity of
Γh(t).

Proof. The proof of the lemma follows directly from the deterministic case and from
Lemma 4.2.

We continue with estimating the geometric perturbation errors in the bilinear forms.

Lemma 5.2. Let t ∈ [0, T ] be fixed. For Wh(·, t) and φh(·, t) ∈ L2(Ω, Sh(t)) with correspond-
ing lifts wh(·, t) and ϕh(·, t) ∈ L2(Ω, Slh(t)), we have the following estimates of the geometric
error:

|m(wh, ϕh)−mh(Wh, φh)| ≤ ch2‖wh‖H(t)‖ϕh‖H(t),(5.2)

|a(wh, ϕh)− ah(Wh, φh)| ≤ ch2‖∇Γwh‖H(t)‖∇Γϕh‖H(t),(5.3)

|g(vh;wh, ϕh)− gh(Vh;Wh, φh)| ≤ ch2‖wh‖V (t)‖ϕh‖V (t),(5.4)

|m(∂•hwh, ϕh)−mh(∂•hWh, φh)| ≤ ch2‖∂•hwh‖H(t)‖ϕ‖H(t).(5.5)

Proof. The assertion follows from uniform bounds of α(ω, t) and ∂•hα(ω, t) with respect to
ω ∈ Ω together with corresponding deterministic results obtained in [19, 32].
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Since the velocity v of Γ(t) is deterministic, we can use [19, Lemma 5.6] to control its
deviation from the discrete velocity vh on Γ(t). Furthermore, the authors of [19, Corollary
5.7] provide the following error estimates for the continuous and discrete material derivatives.

Lemma 5.3. For the continuous velocity v of Γ(t) and the discrete velocity vh defined in
(4.19), the estimate

(5.6) |v − vh|+ h |∇Γ(v − vh)| ≤ ch2

holds pointwise on Γ(t). Moreover, there holds that

‖∂•z − ∂•hz‖H(t) ≤ ch2‖z‖V (t), z ∈ V (t),(5.7)

‖∇Γ(∂•z − ∂•hz)‖H(t) ≤ ch‖z‖L2(Ω,H2(Γ)), z ∈ L2(Ω, H2(Γ(t))),(5.8)

provided that the left-hand sides are well-defined.

Remark 5.1. Since vh is a C2-velocity field by assumption, (5.6) implies a uniform upper
bound for ∇Γ(t) · vh, which in turn yields the estimate

(5.9) |g(vh;w,ϕ)| ≤ c‖w‖H(t)‖ϕ‖H(t) ∀w,ϕ ∈ H(t)

with a constant c independent of h.

5.2. Ritz projection. For each fixed t ∈ [0, T ] and β ∈ L∞(Γ(t)) with 0 < βmin ≤ β(x) ≤
βmax <∞ a.e. on Γ(t), the Ritz projection

H1(Γ(t)) 3 v 7→ Rβv ∈ Slh(t)

is well-defined by the conditions
∫

Γ(t)R
βv = 0 and

(5.10)

∫
Γ(t)

β∇ΓRβv · ∇Γϕh =

∫
Γ(t)

β∇Γv · ∇Γϕh ∀ϕh ∈ Slh(t)

because {η ∈ Slh(t) |
∫

Γ(t) η = 0} ⊂ H1(Γ(t)) is finite dimensional and thus closed. Note that

(5.11) ‖∇ΓR
βv‖L2(Γ(t)) ≤ βmax

βmin
‖∇Γv‖L2(Γ(t)).

For fixed t ∈ [0, T ], the pathwise Ritz projection up : Ω 7→ Slh(t) of u ∈ L2(Ω, H1(Γ(t))) is
defined by

(5.12) Ω 3 ω → up(ω) = Rα(ω,t)u(ω) ∈ Slh(t).

In the following lemma, we state regularity and a-orthogonality.

Lemma 5.4. Let t ∈ [0, T ] be fixed. Then the pathwise Ritz projection up : Ω 7→ Slh(t) of
u ∈ L2(Ω, H1(Γ(t))) satisfies up ∈ L2(Ω, Slh(t)) and the Galerkin orthogonality

(5.13) a(u− up, ηh) = 0 ∀ηh ∈ L2(Ω, Slh(t)).
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Proof. By Assumption 2.1, the mapping

Ω 3 ω 7→ α(ω, t) ∈ B := {β ∈ L∞(Γ(t)) | αmin/2 ≤ β(x) ≤ 2αmax} ⊂ L∞(Γ(t))

is measurable. Hence, by, e.g., [25, Lemma A.5], it is sufficient to prove that the mapping

B 3 β 7→ Rβ ∈ L(H1(Γ(t)), Slh(t))

is continuous with respect to the canonical norm in the space L(H1(Γ(t)), Slh(t)) of linear
operators from H1(Γ(t)) to Slh(t). To this end, let β, β′ ∈ B and v ∈ H1(Γ(t)) be arbitrary,
and we skip the dependence on t from now on. Then, inserting the test function ϕh =
(Rβ −Rβ′)v ∈ Slh(t) into the definition (5.10), utilizing the stability (5.11), we obtain

αmin/2‖(Rβ
′ −Rβ)v‖2H1(Γ) ≤ (1 + C2

P )

∫
Γ
β|∇Γ(Rβ′ −Rβ)v|2

= (1 + C2
P )

(∫
Γ
(β − β′)∇ΓRβ

′
v∇Γ(Rβ′ −Rβ)v

+

∫
Γ
β′∇ΓRβ

′
v∇Γ(Rβ′ −Rβ)v −

∫
Γ
β∇Γv∇Γ(Rβ′ −Rβ)v

)
= (1 + C2

P )

(∫
Γ
(β′ − β)(∇Γv −∇ΓRβ

′
v)∇Γ(Rβ′ −Rβ)v

)
≤ (1 + C2

P )‖β′ − β‖L∞(Γ)‖∇Γ(v −Rβ′v)‖L2(Γ)‖∇Γ(Rβ′ −Rβ)v‖L2(Γ)

≤
(

1 + 4
αmax

αmin

)
(1 + C2

P )‖β′ − β‖L∞(Γ)‖v‖H1(Γ)‖(Rβ
′ −Rβ)v‖H1(Γ),

where CP denotes the Poincaré constant in {η ∈ H1(Γ) |
∫

Γ η = 0} (see, e.g., [20, Theorem
2.12]).

The norm of up in L2(Ω, H1(Γ(t))) is bounded because Poincaré’s inequality and (2.11)
lead to

αmin

∫
Ω
‖up(ω)‖2H1(Γ(t)) ≤ (1 + C2

P )

∫
Ω
α(ω, t)‖∇ΓRα(ω,t)(u(ω))‖2L2(Γ(t))

≤ (1 + C2
P )αmax

∫
Ω
‖∇Γu(ω)‖2L2(Γ(t)) ≤ (1 + C2

P )‖∇Γu‖2L2(Ω,H1(Γ(t))).

This implies that up ∈ L2(Ω, Slh(t)).
It is left to show (5.13). For that purpose, we select an arbitrary test function ϕh(x)

in (5.10), multiply with arbitrary w ∈ L2(Ω), utilize w(ω)∇Γϕh(x) = ∇Γ(w(ω)ϕh(x)), and
integrate over Ω to obtain∫

Ω

∫
Γ(t)

α(ω, x)∇Γ(u(ω, x)− up(ω, x))∇Γ(ϕh(x)w(ω)) = 0.

Since {v(x)w(ω) | v ∈ Slh(t), w ∈ L2(Ω)} is a dense subset of Vh(t), the Galerkin orthogonality
(5.13) follows.
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An error estimate for the pathwise Ritz projection up defined in (5.12) is established in
the next theorem.

Theorem 5.5. For fixed t ∈ [0, T ], the pathwise Ritz projection up ∈ L2(Ω, Slh(t)) of u ∈
L2(Ω, H2(Γ(t))) satisfies the error estimate

(5.14) ‖u− up‖H(t) + h‖∇Γ(u− up)‖H(t) ≤ ch2‖u‖L2(Ω,H2(Γ(t)))

with a constant c depending only on the properties of α as stated in Assumptions 2.1 and 2.2
and the shape regularity of Γh(t).

Proof. The Galerkin orthogonality (5.13) and (2.11) provide

αmin‖∇Γ(u− up)‖H(t) ≤ αmax inf
v∈L2(Ω,Sl

h(t))
‖∇Γ(u− v)‖H(t)

≤ αmax‖∇Γ(u− Ihv)‖H(t).

Hence, the bound for the gradient follows directly from Lemma 5.1.
In order to get the second-order bound, we will use an Aubin–Nitsche duality argument.

For every fixed ω ∈ Ω, we consider the pathwise problem of finding w(ω) ∈ H1(Γ(t)) with∫
Γ(t)w = 0 such that

(5.15)

∫
Γ(t)

α∇Γw(ω) · ∇Γϕ =

∫
Γ(t)

(u− up)ϕ ∀ϕ ∈ H1(Γ(t)).

Since Γ(t) is C2, it follows by [20, Theorem 3.3] that w(ω) ∈ H2(Γ(t)). Inserting the test
function ϕ = w(ω) into (5.15) and utilizing Poincaré’s inequality, we obtain

‖∇Γw(ω)‖L2(Γ(t)) ≤
CP
αmin

‖u− up‖L2(Γ(t)).

The previous estimate together with the product rule for the divergence implies

‖∆Γw(ω)‖L2(Γ(t)) ≤
1

αmin
‖u− up‖L2(Γ(t)) +

CP
α2

min

‖α(ω)‖C1(Γ(t))‖u− up‖L2(Γ(t)).

Hence, we have the following estimate:

(5.16) ‖w(ω)‖H2(Γ(t)) ≤ C‖u− up‖L2(Γ(t))

with a constant C depending only on the properties of α as stated in Assumptions 2.1 and
2.2. Furthermore, well-known results on random elliptic PDEs with uniformly bounded coef-
ficients [7, 9] imply the measurability of w(ω), ω ∈ Ω. Integrating (5.16) over Ω, we therefore
obtain

(5.17) ‖w‖L2(Ω,H2(Γ(t))) ≤ C‖u− up‖H(t).
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Using again Lemma 5.1, Galerkin orthogonality (5.13), and (5.17), we get

‖u− up‖2H(t) = a(w, u− up) = a(w − Ihw, u− up)

≤ αmax‖∇Γ(w − Ihw)‖H(t)‖∇Γ(u− up)‖H(t)

≤ c′h2‖w‖L2(Ω,H2(Γ(t)))‖u‖L2(Ω,H2(Γ(t)))

≤ c′ch2‖u− up‖H(t)‖u‖L2(Ω,H2(Γ(t)))

with a constant c′ depending on the shape regularity of Γh(t). This completes the proof.

Remark 5.2. The first-order error bound for ‖∇Γ(u − up)‖H(t) still holds if the spatial
regularity of α as stated in Assumption 2.2 is not satisfied.

We conclude with an error estimate for the material derivative of up that can be proved
as in the deterministic setting [19, Theorem 6.2].

Theorem 5.6. For each fixed t ∈ [0, T ], the discrete material derivative of the pathwise Ritz
projection satisfies the error estimate

‖∂•hu− ∂•hup‖H(t) + h‖∇Γ(∂•hu− ∂•hup)‖H(t)

≤ ch2(‖u‖L2(Ω,H2(Γ)) + ‖∂•u‖L2(Ω,H2(Γ)))
(5.18)

with a constant C depending only on the properties of α as stated in Assumptions 2.1 and 2.2.

5.3. Error estimates for the ESFEM discretization. Now we are in the position to state
an error estimate for the ESFEM discretization of Problem 2.2 as formulated in Problem 4.1.

Theorem 5.7. Assume that the solution u of Problem 2.2 has the regularity properties

(5.19) sup
t∈(0,T )

‖u(t)‖L2(Ω,H2(Γ(t))) +

∫ T

0
‖∂•u(t)‖2L2(Ω,H2(Γ(t)))dt <∞,

and let Uh ∈ Wh(Vh, Hh) be the solution of the approximating Problem 4.1 with an initial
condition Uh(0) = Uh,0 ∈ Vh(0) such that

(5.20) ‖u(0)− U lh,0‖H(0) ≤ ch2

holds with a constant c > 0 independent of h. Then the lift uh := U lh satisfies the error
estimate

(5.21) sup
t∈(0,T )

‖u(t)− uh(t)‖H(t) ≤ Ch2

with a constant C independent of h.

Proof. Utilizing the preparatory results from the preceding sections, the proof can be
carried out in analogy to the deterministic version stated in [19, Theorem 4.4].

The first step is to decompose the error for fixed t into the pathwise Ritz projection
error and the deviation of the pathwise Ritz projection up from the approximate solution uh
according to

‖u(t)− uh(t)‖H(t) ≤ ‖u(t)− up(t)‖H(t) + ‖up(t)− uh(t)‖H(t), t ∈ (0, T ).
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For ease of presentation, the dependence on t is often skipped in what follows.
As a consequence of Theorem 5.5 and the regularity assumption (5.19), we have

sup
t∈(0,T )

‖u− up‖H(t) ≤ ch2 sup
t∈(0,T )

‖u‖L2(Ω,H2(Γ(t))) <∞.

Hence, it is sufficient to show a corresponding estimate for

θ := up − uh ∈ L2(Ω, Slh).

Here and in what follows we set ϕh = φlh for φh ∈ L2(Ω, Sh).
Utilizing (4.7) and the transport formulae (3.6) in Lemma 3.2 and (4.21) in Lemma 4.3,

respectively, we obtain

(5.22)
d

dt
m(uh, ϕh) + a(uh, ϕh)−m(uh, ∂

•
hϕh) = F1(ϕh) ∀ϕh ∈ L2(Ω, Slh)

denoting

F1(ϕh) := m(∂•huh, ϕh)−mh(∂•hUh, φh)

+ a(uh, ϕh)− ah(Uh, φh) + g(vh;uh, ϕh)− gh(Vh;Uh, φh).(5.23)

Exploiting that u solves Problem 2.2 and thus satisfies (2.14) together with the Galerkin
orthogonality (5.13) and rearranging terms, we derive

(5.24)
d

dt
m(up, ϕh) + a(up, ϕh)−m(up, ∂

•
hϕh) = F2(ϕh) ∀ϕh ∈ L2(Ω, Slh)

denoting

(5.25) F2(ϕh) := m(u, ∂•ϕh − ∂•hϕh) +m(u− up, ∂•hϕh)− d

dt
m(u− up, ϕh).

We subtract (5.22) from (5.24) to get

(5.26)
d

dt
m(θ, ϕh) + a(θ, ϕh)−m(θ, ∂•hϕh) = F2(ϕh)− F1(ϕh) ∀ϕh ∈ L2(Ω, Slh).

Inserting the test function ϕh = θ ∈ L2(Ω, Slh) into (5.26), utilizing the transport lemma,
Lemma 4.3, and integrating in time, we obtain

1

2
‖θ(t)‖2H(t) −

1

2
‖θ(0)‖2H(0) +

∫ t

0
a(θ, θ) +

∫ t

0
g(vh; θ, θ) =

∫ t

0
F2(θ)− F1(θ).

Hence, Assumption 2.1 together with (5.9) in Remark 5.1 provides the estimate

(5.27)

1

2
‖θ(t)‖2 + αmin

∫ t

0
‖∇Γθ‖2H(t)

≤ 1

2
‖θ(0)‖2 + c

∫ t

0
‖θ‖2H(t) +

∫ t

0
|F1(θ)|+ |F2(θ)|.
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Lemma 5.2 allows one to control the geometric error terms in |F1(θ)| according to

|F1(θ)| ≤ ch2‖∂•huh‖H(t)‖θh‖H(t) + ch2‖uh‖V (t)‖θh‖V (t).

The transport formula (4.21) provides the identity

F2(ϕh) = m(u, ∂•ϕh − ∂•hϕh)−m(∂•h(u− up), ϕh)− g(vh;u− up, ϕh)

from which Lemma 5.3, Theorem 5.6, and Theorem 5.5 imply that

|F2(θ)| ≤ ch2‖u‖H(t)‖θh‖V (t) + ch2(‖u‖L2(Ω,H2(Γ(t))) + ‖∂•u‖L2(Ω,H2(Γ(t))))‖θh‖H(t).

We insert these estimates into (5.27), rearrange terms, and apply Young’s inequality to show
that for each ε > 0 there is a positive constant c(ε) such that

1

2
‖θ(t)‖2H(t) + (αmin − ε)

∫ t

0
‖∇Γθ‖2H(t) ≤

1

2
‖θ(0)‖2H(0) + c(ε)

∫ t

0
‖θ‖2H(t)

+ c(ε)h4

∫ t

0

(
‖u‖2L2(Ω,H2(Γ(t))) + ‖∂•u‖2L2(Ω,H2(Γ(t))) + ‖∂•hu‖2H(t) + ‖uh‖2V (t)

)
.

For sufficiently small ε > 0, Gronwall’s lemma implies that

(5.28) sup
t∈(0,T )

‖θ(t)‖2H(t) +

∫ T

0
‖∇Γθ‖2H(t) ≤ c‖θ(0)‖2H(0) + ch4Ch,

where

Ch =

∫ T

0
[‖u‖2L2(Ω,H2(Γ(t)) + ‖∂•u‖2L2(Ω,H2(Γ(t)) + ‖∂•hu‖2H(t) + ‖uh‖2V (t)].

Now the consistency assumption (5.20) yields ‖θ(0)‖2H(0) ≤ ch
4 while the stability result (4.22)

in Remark 4.1 together with the regularity assumption leads to (5.19) Ch ≤ C < ∞ with a
constant C independent of h. This completes the proof.

Remark 5.3. Observe that without Assumption 2.2 we still get the H1-bound(∫ T

0
‖∇Γ(u(t)− uh(t))‖2H(t)

)1/2

≤ Ch.

The following error estimate for the expectation

E[u] =

∫
Ω
u

is an immediate consequence of Theorem 5.7 and the Cauchy–Schwarz inequality.

Theorem 5.8. Under the assumptions and with the notation of Theorem 5.7, we have the
error estimate

(5.29) sup
t∈(0,T )

‖E[u(t)]− E[uh(t)]‖L2(Γ(t)) ≤ Ch2.



ESFEM FOR RANDOM ADVECTION-DIFFUSION EQUATIONS 1677

We close this section with an error estimate for the Monte Carlo approximation of the
expectation E[uh]. Note that E[uh](t) = E[uh(t)] because the probability measure does not
depend on time t. For each fixed t ∈ (0, T ) and some M ∈ N, the Monte Carlo approximation
EM [uh](t) of E[uh](t) is defined by

(5.30) EM [uh(t)] :=
1

M

M∑
i=1

uih(t) ∈ L2(ΩM , L2(Γ(t))),

where uih are independent and identically distributed copies of the random field uh.
A proof of the following well-known result can be found, e.g., in [31, Theorem 9.22].

Lemma 5.9. For each fixed t ∈ (0, T ), w ∈ L2(Ω, L2(Γ(t))), and any M ∈ N we have the
error estimate

(5.31) ‖E[w]− EM [w]‖L2(ΩM ,L2(Γ(t))) = 1√
M

Var[w]
1
2 ≤ 1√

M
‖w‖L2(Ω,L2(Γ(t)))

with Var[w] denoting the variance Var[w] = E[‖E[w]− w‖2L2(Ω,Γ(t))] of w.

Theorem 5.10. Under the assumptions and with the notation of Theorem 5.7, we have the
error estimate

sup
t∈(0,T )

‖E[u](t)− EM [uh](t)‖L2(ΩM ,L2(Γ(t))) ≤ C
(
h2 + 1√

M

)
with a constant C independent of h and M .

Proof. Let us first note that

(5.32) sup
t∈(0,T )

‖uh‖H(t) ≤ (1 + C) sup
t∈(0,T )

‖u‖H(t) <∞

follows from the triangle inequality and Theorem 5.7. For arbitrary fixed t ∈ (0, T ), the
triangle inequality yields

‖E[u](t)− EM [uh](t)‖L2(ΩM ,L2(Γ(t)))

≤ ‖E[u](t)− E[uh](t)‖L2(Γ(t)))+ ‖E[uh(t)]− EM [uh(t)]‖L2(ΩM ,L2(Γ(t)))

so that the assertion follows from Theorem 5.8, Lemma 5.9, and (5.32).

6. Numerical experiments.

6.1. Computational aspects. In the following numerical computations, we consider a
fully discrete scheme as resulting from an implicit Euler discretization of the semidiscrete
problem, Problem 4.1. More precisely, we select a time step τ > 0 with Kτ = T , set

χkj = χj(tk), k = 0, . . . ,K,

with tk = kτ , and approximate Uh(ω, tk) by

Ukh (ω) =

J∑
j=1

Ukj (ω)χkj , k = 0, . . . , J,
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with unknown coefficients Ukj (ω) characterized by the initial condition

U0
h =

J∑
j=1

Uh,0(Xj(0))χ0
j

and the fully discrete scheme

(6.1)
1

τ

(
mk
h(Ukh , χ

k
j )−mk−1

h (Uk−1
h , χk−1

j )
)

+ akh(Ukh , χ
k
j ) =

∫
Ω

∫
Γ(tk)

f(tk)χ
k
j

for k = 1, . . . , J . Here for t = tk the time-dependent bilinear forms mh(·, ·) and ah(·, ·) are
denoted by mk

h(·, ·) and akh(·, ·), respectively. The fully discrete scheme (6.1) is obtained from
an extension of (4.7) to nonvanishing right-hand sides f ∈ C((0, T ), H(t)) by inserting ϕ = χj ,
exploiting (4.2), and replacing the time derivative by the backward difference quotient. As α
is defined on the whole ambient space in the subsequent numerical experiments, the inverse lift
α−l occurring in ah(·, ·) is replaced by α|Γh(t), and the integral is computed using a quadrature
formula of degree 4.

The expectation E[Ukh ] is approximated by the Monte Carlo method,

EM [Ukh ] =
1

M

M∑
i=1

Ukh (ωi), k = 1, . . . ,K,

with independent, uniformly distributed samples ωi ∈ Ω. For each sample ωi, the evaluation of
Ukh (ωi) from the initial condition and (6.1) amounts to the solution of J linear systems which
is performed iteratively by a preconditioned conjugate gradient method up to the accuracy
10−8.

From our theoretical findings stated in Theorem 5.10 and the fully discrete deterministic
results in [18, Theorem 2.4], we expect that the discretization error

(6.2) sup
k=0,...,K

‖E[u](tk)− EM [Ukh ]‖L2(ΩM ,L2(Γh(tk)))

behaves like O
(
h2 + 1√

M
+ τ
)
. This conjecture will be investigated in our numerical exper-

iments. To this end, the integral over ΩM in (6.2) is always approximated by the average
of eight independent and identically distributed sets of samples. We denote the error and
a parameter at level l by El and Pl (for P = h, τ , or M), respectively, to introduce the
experimental order of convergence at level l according to

eoc(Pl) =
log(El/El−1)

log(Pl/Pl−1)
.

The implementation was carried out in the framework of Distributed Unified Numerics En-
vironment (Dune) [4, 5, 13], and the corresponding code is available online from https:
//github.com/tranner/dune-mcesfem.

https://github.com/tranner/dune-mcesfem
https://github.com/tranner/dune-mcesfem
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6.2. Moving curve. We will consider four problems on a moving curve with different
regularities of the random diffusion coefficients. We always consider the ellipse

Γ(t) =

{
x = (x1, x2) ∈ R2

∣∣∣∣ x2
1

a(t)
+

x2
2

b(t)
= 1

}
, t ∈ [0, T ],

with oscillating axes a(t) = 1 + 1
4 sin(t), b(t) = 1 + 1

4 cos(t), the velocity

v(t) =

(
x1a(t)

2a′(t)
,
x2b(t)

2b′(t)

)T
,

and T = 1.
In each problem, the right-hand side f in (6.1) is selected in such a way that for each

ω ∈ Ω the exact solution of the resulting pathwise problem is given by

u(x, t, ω) = sin(t)
{

cos(3x1) + cos(3x2) + Y1(ω) cos(5x1) + Y2(ω) cos(5x2)
}
,

which clearly has a pathwise strong material derivative for all ω ∈ Ω and satisfies the regularity
property (5.19). We set u0(x, ω) = u(x, 0, ω) = 0 so that (5.20) obviously holds true.

The initial polygonal approximation Γh,0 of Γ(0) is depicted in Figure 1 for the mesh sizes
h = hj , j = 0, . . . , 4, that are used in our computations.

Figure 1. Polygonal approximation Γh,0 of Γ(0) for h = h0, . . . , h4.

We select the corresponding time step sizes τj = τj−1/4 and the corresponding numbers
of samples Mj = 16Mj−1 for j = 1, . . . , 4.

For the four test problems, we choose a different random diffusion coefficient α occurring in
ah(·, ·). In each case, Y1 and Y2 stand for independent, uniformly distributed random variables
on Ω = (−1, 1).

6.2.1. Spatially smooth coefficient. We first consider a smooth problem. The random
diffusion coefficient α is given by

α(x, ω) = 1 +
Y1(ω)

4
sin(2x1) +

Y2(ω)

4
sin(2x2)

and satisfies Assumptions 2.1 and 2.2. The resulting approximate discretization errors (6.2)
are reported in Table 1 and suggest the optimal behavior O(h2 +M−1/2 + τ).
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Table 1
Discretization errors for a moving curve in R2 for test case 6.2.1.

h M τ Error eoc(h) eoc(M) eoc(τ)

1.500000 1 1 3.00350 — — —
0.843310 16 4−1 2.23278 · 10−1 4.51325 −0.93743 1.87487
0.434572 256 4−2 1.86602 · 10−1 0.27066 −0.06472 0.12944
0.218962 4 096 4−3 4.88096 · 10−2 1.95642 −0.48368 0.96736
0.109692 65 536 4−4 1.29667 · 10−2 1.91768 −0.47809 0.95618

6.2.2. Spatially less smooth coefficient. We consider the random diffusion coefficient α
given by

α(x, ω) = 1 +
Y1(ω)

4
|x1|x1 +

Y2(ω)

4
|x2|x2.

Note that this coefficient is less smooth in x compared to the previous example. Namely,
α(·, ω) ∈ C1(R2) and its tangential gradient is uniformly bounded in ω so that Assumptions
2.1 and 2.2 are satisfied, but α(·, ω) /∈ C2(R2). The resulting discretization errors (6.2)
reported in Table 2 are suggesting the optimal behavior O(h2 +M−1/2 + τ).

Table 2
Discretization errors for a moving curve in R2 for test case 6.2.2.

h M τ Error eoc(h) eoc(M) eoc(τ)

0.843082 16 0.1 · 41 2.28659 · 10−1 — — —
0.434572 256 0.1 2.14613 · 10−1 0.09566 −0.02287 0.04573
0.218962 4 096 0.1 · 4−1 5.14210 · 10−2 2.08441 −0.51533 1.03065
0.109692 65 536 0.1 · 4−2 1.37766 · 10−2 1.90543 −0.47503 0.95007
0.054873 1 048 576 0.1 · 4−3 3.86361 · 10−3 1.83548 −0.45855 0.91710

6.2.3. Nonlinear occurrence of randomness. The random coefficient α in the next ex-
periment is spatially smooth but now exhibits stronger stochastic fluctuations. It is given
by

α(x, ω) = 1 +
1

4
sin (4πY1(ω)x1 + 4πY2(ω)x2) .

Again, Assumptions 2.1 and 2.2 are fulfilled, and the resulting discretization errors (6.2)
reported in Table 3 are suggesting the optimal behavior O(h2 +M−1/2 + τ).

Table 3
Discretization errors for a moving curve in R2 for test case 6.2.3.

h M τ Error eoc(h) eoc(M) eoc(τ)

0.843082 16 0.1 · 41 2.70111 · 10−1 — — —
0.434572 256 0.1 2.22950 · 10−1 0.28955 −0.06921 0.13842
0.218962 4 096 0.1 · 4−1 5.82967 · 10−2 1.95693 −0.48381 0.96762
0.109692 65 536 0.1 · 4−2 1.48861 · 10−2 1.97494 −0.49236 0.98473
0.054873 1 048 576 0.1 · 4−3 3.74749 · 10−3 1.99136 −0.49749 0.99498
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6.2.4. Violating the assumptions. We finally test our algorithm with a problem that
satisfies Assumption 2.1 but not Assumption 2.2. The random diffusion coefficient α is given
by

α(x, ω) = 1 + exp

(
−2x2

1

Y1(ω) + 1

)
+ exp

(
−2x2

2

Y2(ω) + 1

)
.

The tangential gradient of α is not uniformly bounded in ω ∈ Ω. Hence, Assumption 2.2
is violated and Theorem 5.10 cannot be applied. Only first-order error bounds in h hold
according to Remark 5.2. However, the resulting discretization errors (6.2) reported in Table 4
are still suggesting the optimal behavior O(h2 +M−1/2 + τ).

Table 4
Discretization errors for a moving curve in R2 for test case 6.2.4.

h M τ Error eoc(h) eoc(M) eoc(τ)

0.844130 16 0.1 4.14221 · 10−1 — — —
0.434602 256 0.1 · 4−1 2.72451 · 10−1 0.63105 −0.15110 0.30220
0.218963 4 096 0.1 · 4−2 7.50688 · 10−2 1.88038 −0.46493 0.92985
0.109692 65 536 0.1 · 4−3 1.88296 · 10−2 2.00075 −0.49880 0.99760
0.054873 1 048 576 0.1 · 4−4 4.95240 · 10−3 1.92815 −0.48170 0.96340

6.3. Moving surface. We consider the ellipsoid

Γ(t) =

{
x = (x1, x2, x3) ∈ R3

∣∣∣∣ x2
1

a(t)
+ x2

2 + x2
3 = 1

}
, t ∈ [0, T ],

with oscillating x1-axis a(t) = 1 + 1
4 sin(t), the velocity

v(t) =

(
x1a(t)

2a′(t)
, 0, 0

)T
,

and T = 1. The random diffusion coefficient α occurring in ah(·, ·) is given by

α(x, ω) = 1 + x2
1 + Y1(ω)x4

1 + Y2(ω)x4
2,

where Y1 and Y2 denote independent, uniformly distributed random variables on Ω = (−1, 1).
Observe that Assumptions 2.1 and 2.2 are satisfied for this choice. The right-hand side f in
(6.1) is chosen such that for each ω ∈ Ω the exact solution of the resulting pathwise problem
is given by

u(x, t, ω) = sin(t)x1x2 + Y1(ω) sin(2t)x2
1 + Y2(ω) sin(2t)x2,

which clearly has a pathwise strong material derivative for all ω ∈ Ω and satisfies the regularity
property (5.19). As before, we select the initial condition u0(x, ω) = u(x, 0, ω) = 0 so that
(5.20) holds true.

The initial triangular approximation Γh,0 of Γ(0) is depicted in Figure 2 for the mesh sizes
h = hj , j = 0, . . . , 3. We select the corresponding time step sizes τ0 = 1, τj = τj−1/4 and
the corresponding numbers of samples M1 = 1, Mj = 16Mj−1 for j = 1, 2, 3. The resulting
discretization errors (6.2) are shown in Table 5. Again, we observe that the discretization
error behaves like O(h2 + M−1/2 + τ). This is in accordance with our theoretical findings
stated in Theorem 5.10 and fully discrete deterministic results [18, Theorem 2.4].
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Figure 2. Triangular approximation Γh,0 of Γ(0) for h = h0, . . . , h3.

Table 5
Discretization errors for a moving surface in R3.

h M τ Error eoc(h) eoc(M) eoc(τ)

1.276870 1 1 9.91189 · 10−1 — — —
0.831246 16 4−1 1.70339 · 10−1 4.10285 −0.63519 1.27037
0.440169 256 4−2 4.61829 · 10−2 2.05293 −0.47075 0.94149
0.222895 4 096 4−3 1.18779 · 10−2 1.99561 −0.48977 0.97954

7. Conclusion. The paper analyzes an ESFEM discretization of advection-diffusion equa-
tions with random coefficients on evolving hypersurfaces.

As a straightforward application of the Banach–Nečas–Babuška theorem to the resulting
semidiscrete problem is prohibited by noncompleteness of the solution space, we applied a
pathwise approach.

Using suitable regularity assumptions on the velocity and the coefficients together with
the uniform boundedness of the coefficients from below and above, we proved optimal error
bounds for the semidiscrete solution and its expectation utilizing pathwise Ritz projection.
Our theoretical results are illustrated by numerical examples.

While our analysis is restricted to uniformly bounded coefficients, lognormal distributions
without these properties are of considerable importance in many applications, such as biology,
cosmology, climatology, etc. (see, e.g., [11, 29, 34]). Namely, in many situations a spatio-
temporal random field is considered to be the logarithm of the Gaussian distribution and
the evolving process is defined over the sphere, which represents, for example, the Earth, or
more generally, it is defined over the evolving hypersurface, which models, for example, the
oscillating cell-membrane. In order to analyze and simulate a Gaussian random field over
more general evolving hypersurfaces, one has to investigate its representation and regularity
properties. This is the topic of current research.
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