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Figure 1. Posture reconstruction pipeline and imaging setup.

Abstract

3D shape reconstruction typically requires identifying
object features or textures in multiple images of a sub-
ject. This approach is not viable when the subject is semi-
transparent and moving in and out of focus. Here we over-
come these challenges by rendering a candidate shape with
adaptive blurring and transparency for comparison with
the images. We use the microscopic nematode Caenorhab-
ditis elegans as a case study as it freely explores a 3D
complex fluid with constantly changing optical properties.
We model the slender worm as a 3D curve using an in-
trinsic parametrisation that naturally admits biologically-
informed constraints and regularisation. To account for
the changing optics we develop a novel differentiable ren-
derer to construct images from 2D projections and compare
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against raw images to generate a pixel-wise error to jointly
update the curve, camera and renderer parameters using
gradient descent. The method is robust to interference such
as bubbles and dirt trapped in the fluid, stays consistent
through complex sequences of postures, recovers reliable
estimates from blurry images and provides a significant im-
provement on previous attempts to track C. elegans in 3D.
Our results demonstrate the potential of direct approaches
to shape estimation in complex physical environments in the
absence of ground-truth data.

1. Introduction

Many creatures such as fish, birds and insects move in all
directions to search and navigate volumetric environments.
Acquiring 3D data of their motion has informed models of
locomotion, behaviour and neural and mechanical control
[3,22]. While technological advances have made the collec-
tion of large quantities of multi-viewpoint visual data more
attainable, methods for extracting and modelling 3D in-
formation remain largely domain-dependant as few species
share common geometric models or exist within the same
spatial and temporal scales [4, 11, 14, 26, 37, 41, 50, 54, 65].
Furthermore, while humans and some domesticated ani-
mals [30,60] may act naturally while wearing special mark-
ers, marker-less observations of many species makes fea-
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ture extraction more challenging and means pose estimation
generally lacks ground-truth data [48].

As a case study in marker-less 3D shape reconstruction,
we consider C. elegans, a hair-thick, ∼1mm long animal
with a simple tapered cylinder shape, which can be con-
structed from a midline “skeleton”. In the wild, C. elegans
can be found in a wide range of complex 3D environments,
e.g. decomposing organic matter, with continually changing
physical properties [15, 17, 46]. However, to date, experi-
ments have focused nearly exclusively on locomotion on a
plane, limiting insight to the constrained, planar behaviours.

We obtained a large dataset (4 hours 53 minutes ≃
440,000 frames at 25Hz) of experimental recordings of in-
dividual worms moving freely inside a glass cube filled
with a gelatin solution. The cube is positioned between
three nearly-orthogonal static cameras fitted with telecentric
lenses. Initial pinhole camera model parameter estimates
are provided [45] but are imprecise and require continuous
adjustment across the course of a recording to account for
small vibrations and optical changes to the gel. We aim to
simultaneously reconstruct a 3D shape and find corrected
camera parameters to match these recordings in a process
akin to bundle adjustment [56].

3D reconstruction typically involves the identification
and triangulation of common features from multiple view-
points or the synthesis of full images including texture and
shading information to match given scenes [16, 21, 47, 66].
Imaging animals with length ∼1mm requires sufficient
magnification, but simultaneously capturing long-term tra-
jectories up to 25 minutes requires a large volume of view
(10-20 worm lengths per axis). As the worm explores the
cube it frequently appears out of focus in one or more of
the cameras. Air bubbles and dirt trapped in the gel along
with old tracks are difficult to differentiate from the trans-
parent worm, particularly at the tapered ends. Self occlu-
sion invariably appears in a least one view, where hidden
parts darken the foreground while the ordering of fore/back-
parts is not discernible. As the semi-transparent and self-
occluding subject moves in the volume, photometric infor-
mation in one view bears little relevance to the appearance
in the others making feature identification and photometric
matching particularly challenging. We found that standard
approaches may suffice for limited sub-clips, but lose parts
of the object or fail catastrophically for much of the data
and the solution requires a degree of adaptation.

We present an integrated “project-render-score” algo-
rithm to obtain a midline curve for each image-triplet
(Fig. 1). Discrete curve vertices are projected through a
triplet of pinhole camera models, rendered to produce an
image-triplet for direct comparison against the recorded im-
ages and scored according to their intersection with worm-
like pixels in all three views. The differentiable renderer
stacks 2D super-Gaussian blobs at the projected locations

of each vertex to approximate the transparency along the
worm, accounting for the variable focus and providing soft
edges that direct the geometric model towards the midline.
The scoring allows the detection of incongruities and keeps
the curve aligned to the worm in all views. Regularisation
terms ensure smoothness along the body and in time. Curve,
camera and rendering parameters are jointly optimised us-
ing gradient descent to convergence. Once the worm shape
has been resolved, it is generally only lost during image
degradation or significant self-occlusions that make the pos-
ture unresolvable by eye.

In summary, our main contributions are:
• A robust pipeline for 3D posture reconstruction of a

freely deforming semi-transparent object from noisy
images.

• A novel viewpoint renderer to capture optical distor-
tions and transparency.

• A feature-free bundle adjustment algorithm using di-
rect image comparison and gradient descent.

2. Related work
Bundle adjustment (BA) is a procedure to jointly optimise
3D geometry and camera parameters [21, 56]. BA typically
identifies common features of an object from multiple view-
points in order to minimise a prediction error between pro-
jections of the corresponding 3D points and their 2D ob-
servations. BA is frequently used in conjunction with other
methods to find camera parameters using multiple images
of a 3D calibration object with known control points or for
fine-tuning results [13, 23, 36, 40, 57, 59].

Feature detection converts photometric information into
image coordinates. In BA, coordinates of common features
are used to solve a geometric optimisation problem. Photo-
metric bundle adjustment methods additionally require ob-
jects to have the same appearance in all views [12, 18]. Our
method is entirely photometric, as such differing from BA.
As our objects appear differently across views, all pixel in-
formation is used and the geometry is solved intrinsically.

Pose estimation Deep network approaches have proved
well-suited to 2D human-pose estimation as they are po-
tent feature extractors and large annotated training sets are
available [1, 51, 55]. For 3D postures, ground truth multi-
view datasets are less common. Recent progress [35] re-
lies on end-to-end architectures [19, 27, 29, 32, 42, 61] or
splitting the problem into 2D pose estimation and then con-
structing the 3D pose [10, 38]. Despite similar approaches
used for non-human pose estimation, the huge variability
in scales and shapes among species introduces a variety of
challenges [26]. Motion capture in controlled settings with
markers (providing ground truth skeleton and joint angle
data for humans, horses and dogs [30,60]), are not available
for most animals. Generalised mesh surfaces may be used,
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but often require multiple views and thousands of parame-
ters, and do not guarantee consistency through time. In con-
trast, approximating an animal shape using a few-parameter
morphable model can be both tractable and robust. Suc-
cessful examples include swimmers [9, 43], birds [27, 58],
mammals [2,6,28,39] and generic quadrupeds [7,67]. How-
ever, these methods expect opaque subjects with consistent
textural appearances between views.

C. elegans has a simple geometric shape that can be well
reconstructed from a midline skeleton and parametrised by
curvature values along the body (see Sec. 3). This is the
deformable template we look to fit to the data. Despite
the apparent simplicity, each vertex of the discretised curve
has two degrees of freedom (two curvature values) and as
we use 128 vertices, our model is highly deformable and
requires many parameters (although smoothness regulari-
sation simplifies the problem somewhat). In contrast to
deep-learning approaches, our model includes only a small
number of explainable parameters and direct optimisation
avoids lengthy training and dataset requirements.

C. elegans Numerous freely available software packages
are capable of simultaneous tracking and skeletonising sin-
gle or multiple worms in 2D using inexpensive microscopic
imaging [5, 25, 44, 52, 53, 62] (see [24] for a review). Most
of these skeletonisers combine image segmentation to sep-
arate the animal from the background with thinning of the
mask to some midline pixels and fitting a spline.

The 3D reconstruction problem has received relatively
little attention. Using at first two views [34] and then three,
Kwon et al. [33] designed a motorised stage coupled with a
real-time tracker to keep a worm in focus under high magni-
fication in a 3D environment while capturing trajectories of
up to 3 minutes. Thresholded images are lifted into 3D, in-
tersected in voxel space and thinned [20] to produce a final
skeleton. Kwon et al. omit camera modelling and assume
perfectly parallel projections – assumptions that result in
large errors for the data we use. Shaw et al. [49] employed
light field microscopy to generate depth maps alongside im-
ages from a single viewpoint. A midline skeleton is gener-
ated by fitting a spline to the 3D coordinates of the central
voxels. However, self-occlusions cannot be resolved and
only relatively planar postures were investigated.

Salfelder et al. [45] and Yuval [63] both present 3D re-
construction algorithms using the three-camera set up and
calibration described in [45]. In Salfelder et al. [45], a neu-
ral network is trained to identify 2D midlines from individ-
ual camera images before lifting into 3D voxel space. To ac-
count for changing camera parameters, a relative axial shift
(dx, dy, dz) is optimised for each frame-triplet to maximise
the voxel intersection before thinning. Remaining voxel co-
ordinates are used as control points to fit a curve using a
finite-element formulation. This approach works well when

the midline is well detected in each of the views, but can
fail on occluded postures or low-resolution, blurry images.

Yuval [63] uses a neural network to track head and tail
points in 3D lab coordinates and a curve is fit between these
fixed end points using a hill-climbing optimisation algo-
rithm. Scoring is based on curve smoothness and pixel in-
tensities at the projected curve points. This method works
well when the head and tail are correctly identified but
struggles, or requires manual correction, otherwise.

In our approach we find that incorporating the camera
model parameters into the optimisation results in more ro-
bust and accurate results. This extends the idea proposed
in Salfelder et al. [45] that adjusting the relative positions
of the cameras could result in large gains in accuracy. It
is likely that the relative shift adjustments, presented there,
account for the changing optical properties.

3. Geometric model
Nematode shapes can be well approximated by a tapered

cylinder and computed from a midline. We construct the
midline curve in 3D using an object-centric parametrisa-
tion, separating shape from position and orientation to al-
low us to easily constrain and regularise the shape to stay
within biologically-reasonable bounds. We discretise the
curve into N equidistant vertices and encode the posture in
curvature K ∈ RN×2 and length l ∈ R that fully define the
shape up to a rigid-body transformation.

We express the 3D curve using the Bishop frame [8],
given by TM1M2 where T is the normalised tangent of the
curve and M1,M2 form an orthogonal basis along the mid-
line. At vertex n, the curvature is Kn = (m1

n,m
2
n), where

m1
n,m

2
n ∈ R are the curvature components along M1,M2.

(The more familiar Frenet frame is less stable as it is unde-
fined at zero-curvature points.) Numerical integration of a
system of difference equations from starting point Pinit and
initial orientation (Tinit,M

1
init,M

2
init) yields the curve path

P ∈ RN×3. See Appendix A for details.
During optimisation, errors accumulate near the starting

point, Pinit, resulting in either parts of the curve moving
faster than other or kinks developing (even with strong regu-
larisation). To resolve this we sample an initial vertex index
n0 from a Gaussian distribution (subject to rounding) cen-
tred at the middle index at every optimisation step. Setting
the starting point Pinit = Pn0

has the effect of continually
shifting the discontinuity so kinks are never given the op-
portunity to develop (Fig. 2). Summarising the integration
as F , the 3D curve is generated from the parameters:

(P̂ , T̂ , M̂1) = F
(
Pn0

, Tn0
,M1

n0
,K, l, n0

)
. (1)

Each gradient update adjusts all curvature values K but
the position and orientation only at the randomly selected
n0 vertex (Pn0

, Tn0
,M1

n0
). Updating (P, T,M1) at only
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Figure 2. The 3D curve is traced out from initial point Pn0 and orientation frame (Tn0 ,M
1
n0

,M2
n0

). The index n0 of the initial point is
drawn from a normal distribution at each iteration to prevent kinks developing through repeated use of the same starting point. The final
curve P̂ is computed in two parts by integrating the Bishop equations with curvature K towards the head and tail separately.

this vertex produces a P that is inconsistent with the up-
dated K. Therefore, after applying gradient updates we
re-compute the full curve and orientation from n0 and set
(P, T,M1) to the output (P̂ , T̂ , M̂1).

Since the curve describes a biological creature, we con-
strain the length l to (lmin, lmax) and limit the curvature by
|Kn| < 2πkmax. The values of (lmin, lmax) we use vary de-
pending on magnification but the bounds do not need to
be tight and are in the range 0.5–2mm. The curvature
constraint kmax is set by considering the number of circle
achieved by a constant curvature curve and is fixed at 3.

4. Project, Render, Score
The core of the optimisation pipeline is separable into

three main stages; project, render and score. The 3D curve
P̂ generated in Eq. (1) is projected through the camera mod-
els into 2D points that are rendered into images and then
scored against the three views.

4.1. Project

The cameras are modelled using a triplet of pinhole cam-
era models with tangential and radial distortion that project
3D points into image planes using perspective transforma-
tions (see Appendix B). Each pinhole camera model of-
fers a simple (15 parameters, {ηc}), tractable, approxima-
tion to the optical transformation. We also include relative
shifts along the local coordinate axes, ηs = (dx, dy, dz),
shared between the three models, as proposed by Salfelder
et al. [45]. Initial camera coefficients for the triplet-model
are provided along with the recordings and typically give
root mean squared reprojection errors up to 10 pixels (∼
O(worm radius)).

Due to the initial calibration errors and changes in optical
properties as the gelatin sets and is disturbed by the worms
we re-calibrate the cameras at every frame by including the
camera parameters in the optimisation step. To avoid an
under-determined problem, after we have found a config-

Figure 3. The rendering stage generates super-Gaussian blobs at
each vertex position on the image. The shape of the blobs depends
on the optimisable parameters: the scale σ, the intensity ι and the
exponent used in the Gaussian ρ. σ and ι are tapered down to
fixed minimum values at the head and tail. The effects of vary-
ing these parameters from a converged solution (blue curves) are
shown above (green curves) and below (orange curves) each.

uration that supports good reconstructions for a recording
we fix all but the ηs parameters. Interestingly, we still see
changes (up to 30px ∼ 0.15mm) in ηs but as this relates to
the relative positioning it does not affect the posture recon-
struction or long-term trajectories.

Projecting the 3D curve P̂ through the camera-triplet
model Γ with parameters η = {η0, η1, η2, ηs} generates
2D image points per view, which we combine as Q =
Γ(P̂ , η) ∈ R3×N×2.
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4.2. Render

In order to evaluate the reconstruction directly against
the raw data, we render the projected 2D midline points into
images using optimisable shape and rendering parameters.
Since worm bodies are well approximated by tapered cylin-
ders, in theory we only require maximum and minimum ra-
dius values and a tapering function. However, C. elegans
are semi-transparent – increasingly so at the head and tail
– and their internal anatomy has varying optical properties
that diffract and distort the light. These challenges are fur-
ther exacerbated by the worms often being out of focus in at
least one of the views, therefore even an anatomically accu-
rate model stands little chance of being correctly resolved.

We render realistic images by combining 2D super-
Gaussian functions centred on each projected vertex. Cru-
cially, we allow the rendering parameters to differ between
cameras since the animal seldom has the same photometric
qualities in different views. We optimise three parameters
for each camera view c: σc ∈ R controls the spread, ιc ∈ R
scales the intensity, and ρc ∈ R sharpens or softens the
edges (Fig. 3). To capture the tapered shape we weight σc

and ιc from their optimisable values along the middle 60%
to minimum values σmin and ιmin at the ends and define the
tapered outputs σ̄c ∈ RN and ῑc ∈ RN (Appendix C). σmin
and ιmin are manually fixed for each recording to account for
different magnification factors and worm size variability.

For each camera index c and vertex index n we define
the rendered blob Bc,n ∈ Rw×w (image size w) for pixel
(i, j) as:

Bc,n(i, j) = ῑc,n exp

[
−
(
(i−Qc,n,0)

2 + (j −Qc,n,1)
2

2σ̄2
c,n

)ρc
]
.

(2)
The stacks of blobs are combined to generate the complete
renderings R ∈ R3×w×w by taking the maximum pixel
value across all blobs: for pixel (i, j),

Rc(i, j) = max {Bc,n(i, j)}n=0,...,N−1 . (3)

The orientation of the body directly affects the pixel in-
tensity of both raw and rendered images. When pointing
directly at a camera the peaks of the blobs cluster closely to-
gether and appear as a high-intensity (opaque) circle. Point-
ing laterally causes the peaks to spread out on the image re-
vealing more of the lower-intensity tails. In both situations
our blob-rendering approach approximates transparency ef-
fects in the raw images without the need to model complex
intensity-orientation responses. Moreover, super-Gaussian
blobs allow sharp outlines to be produced in one view by
using a large exponent and flat-top blobs, and blurry images
to be produced for another, using low intensity and high
variance.

Figure 4. The 3D curve points are scored individually according
to how well they match the three views. The triplet of blobs asso-
ciated with vertex n (B.,n) are multiplied with the images I and
summed. We take the minimum of the three sums and then taper
these values from the midpoint-out.

4.3. Score

In order to evaluate how well the curve represents the
worm we require a way of distinguishing between worm-
pixels and non-worm pixels such as dirt, bubbles, old tracks
and even other worms. When the animal truly intersects
with environmental interference it can be impossible to dif-
ferentiate between the two, but in the majority of cases there
exists a gap between the worm and the noise that is visi-
ble in at least one of the views. By ensuring that the curve
corresponds to a single contiguous pixel mass in all of the
images we are able to safely ignore other artefacts (Fig. 4).

To detect if the curve is bridging a gap, each vertex P̂n is
scored by correlating its corresponding blobs B.,n (Sec. 4.2)
with the images I . The raw score Sn ∈ R is defined:

Sn = min

{∑
i,j Bc,n · Ic
σ̄c,nῑc,n

}
c=0,1,2

(4)

where · is element-wise multiplication and the sum is taken
over the image dimensions. By taking the minimum we
ensure that vertices failing to match pixels in any one of the
views will receive low scores regardless of how well they
match pixels in the other views.

If the curve is bridging two disjoint groups of pixels that
are visible in all three views this will present as two peaks
in S. Since we are only interested in finding one object we
restrict the scores to contain just one peak by tapering S
from the middle-out to form the intermediate S′. Finally
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Figure 5. The noisy input images are cleaned by applying masks
that force pixel-errors to be local to the current estimate. The blobs
B are scaled by the relative scores Ŝ, combined using the maxi-
mum pixel value across blobs and thresholded to form the masks
M . The masks are applied to the raw input images I to generate
the targets: I⋆. Masking ensures only a single contiguous pixel
mass is detected. Without it, parts of the reconstruction can “stick”
to nearby bubbles and other artefacts as shown below.

we normalise S′ to get scores Ŝ relative to the peak:

S′
n =


min{Sn, S

′
n+1} 0 ≤ n < N/2

Sn n = N/2

min{Sn, S
′
n−1} N/2 < n < N

(5)

Ŝ =
S′

maxn{S′}
. (6)

The final score profile Ŝ provides insight into how well
the curve matches a contiguous pixel mass across all three
views and how evenly that mass is distributed.

Masking From the score profile Ŝ we identify image ar-
eas that are more likely to contain the pixel masses that cor-
respond to the worm. Masks M ∈ R3×w×w applied to the
input, I⋆ = M · I , focuses attention (and gradient) to only
these areas of interest, consistently across all three views
and exclude interference outside the masks (Fig. 5 and Ap-
pendix D). Pixel intensities outside the masks are signifi-
cantly reduced, but not zeroed in order to avoid stagnation
in case the reconstruction completely misses the worm.

Figure 6. As the animal moves along the path of its midline the
tail may be left behind (left column). This can be identified from
an unbalanced score profile Ŝ. By periodically shifting the curve
along its length (adding new curvature values at one end and dis-
carding from the other) the centroid index (n̄) of the scores can be
centred. Gradient descent optimisation then updates the new cur-
vature values so the curve matches the target (right column).

Centre-shifting The scores Ŝ also indicate the relative
positioning of the curve over the target object. As the curve
aligns with a pixel mass, vertices with high scores (appar-
ently “converged”) tend to lock into place thus hindering
convergence of the rest of the object. For each frame, we
use the previous frame solution as the starting point, so the
majority of points rapidly converge. However, errors intro-
duced at the tips remain as they are insufficient to generate
the collective shift required. The effect can easily be identi-
fied from an unbalanced score profile (Fig. 6) and rectified
by periodically shifting the curve along its length between
gradient descent optimisation steps (Appendix E).

5. Optimisation
The main pixel-loss to be minimised is defined as:

Lpx =
1

3w2

∑
c,i,j

(Rc(i, j)− I⋆c (i, j))
2. (7)

To improve head and tail detection we also minimise a
scores-loss,

Lsc =
max(S′)N∑

n S
′′
n

, where (8)

S′′
n = S′

n

(
2n− (N − 1)

N − 1

)2

, (9)

that is quadratically weighted towards the tips where the
scores are naturally lower due to the transparency.
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In addition we include a number of regularisation terms.
To keep the curve smooth we define

Lsm =

N−1∑
n=1

|Kn −Kn−1|2, (10)

where | · | is the l2-norm. To ensure all parameters change
smoothly between frames we set

Lt =
∑

x∈{l,K,P̂ ,η,σ,ι,ρ}

|xprev − x|2, (11)

where xprev refers to the frozen value of the variable from
the previous frame. And to avoid self-intersections, we use

dn,m = |P̂n − P̂m|, (12)

d′n,m =
1

3

∑
c

σ̄c,n +
1

3

∑
c

σ̄c,m, and (13)

Li =

N−N/kmax−1∑
n=0

N−1∑
m=n+N/kmax

{
d′
n,m

dn,m
, if dn,m < d′n,m

0, otherwise.

(14)

A loss is incurred, Li > 0, when two points which are suf-
ficiently far apart (> N/kmax) along the curve come within
a distance defined by the sum of their mean rendering vari-
ances (since these approximate the worm’s radius). Eq. (14)
forces the algorithm to find postures that are always feasible
even during self-occlusions and complex manoeuvres.

The losses are combined in a weighted sum to yield the
final optimisation target:

L = ωpxLpx + ωscLsc + ωsmLsm + ωtLt + ωiLi. (15)

Values of ω used in our experiments are listed in Tab. S7.
To achieve robust reconstructions it is important that the

curve parameters learn fastest, then the rendering parame-
ters and finally the camera parameters. Imposing this hierar-
chy of rates ensures camera model stability and prevents the
renderer from over-blurring the edges (as it tries to “reach”
the pixels). Thus, movement between frames is primar-
ily captured through curve deformations. We use learning
rates λp = 1e−3 for the curve parameters {P, T,M1,K, l},
λr = 1e−4 for the rendering parameters {σ, ι, ρ} and
λη = 1e−5 for the camera parameters η.

The curve is initialised as a small (∼0.2mm), randomly
oriented straight line centred in the field of view of all three
cameras. We slowly increase the length to lmin over the first
200-500 steps as the curve gets positioned and orientated.

The pipeline is constructed using PyTorch [64] and the
loss minimised is using Adam [31] with periodic centre-
shifting of the curve vertices. Learning rates are decreased

Figure 7. Validation against 487 manual annotations. At the top
we show an example of an annotated frame (left, orange) alongside
a projection of our matching 3D midline (right, blue). Below we
plot the sample averages ±2std. We find our midlines are consis-
tently close to annotated points (blue curve), but annotations typi-
cally extend further into the head and tail regions (orange curve).

by a factor of 0.8 for every 5 steps taken without improve-
ment in L to a minimum of 1e−6 until convergence is de-
tected. Subsequent frames are instantiated with the solu-
tion from the previous frame for efficiency and to maintain
consistency through complex sequences of self-occluding
postures. Example videos showing the effects of varying
some of the options on the optimisation are described in
Appendix I.

6. Results

Using our method we generate high quality 3D midline
reconstructions for 43 of 44 recordings. One fails due to ex-
cessive coiling of the worm. Significant occlusions also oc-
cur during successful reconstructions and when combined
with loss of focus can cause the shape to be lost. Video
clips of good and poor reconstructions through challenging
environmental conditions are described in Appendix I along
with ablation results to show benefits of each component.

We compare 2D reprojections of our midlines against
487 manual annotations that were produced from single im-
ages in isolation and contain a varying number of unordered
points. We calculate the minimum distance from each an-
notated point to any reconstructed point and vice-versa and
find that our midlines consistently come close (∼2px) to
hand-annotated points (Fig. 7). Annotated points at the ends
show an increased distance (∼10px) to our midline points.
This shows that our curves generally fall short of reaching
the very tips of the worm by ∼ O(worm radius).

Our method significantly outperforms previous methods
developed using the same dataset [45, 63] when evaluated
against the manual annotations (Tab. S1), but these only
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Figure 8. A comparison between our Midline Finder (MF), Yuval’s Worm-Tracker 3D (WT3D) [63] and Salfelder et al.’s ‘reconst’ [45]
methods across a single trial (∼13min). In the majority of cases our method generates midlines that better match the data (lower pixel
losses, Lpx). We show moving averages over 25 frames (∼1 s) with shaded areas indicating ±2std.

Figure 9. The rendering parameters change continually over the course of a recording to capture optical changes. Clear images (e.g. early
frames in cameras 0 and 1, switching to late frames in camera 2) are consistent with small values of σ and large values of ρ. Blurry images
(early camera 2, late camera 1) use high σ and small ρ. We show moving averages over 25 frames (∼1 s) with shaded areas indicating
±2std. Example comparisons between the renders (red) and raw images (grey) are shown on either side.

cover a selection of hand-picked examples. For a large-
scale comparison we take 3D midlines and camera param-
eters found by each method and, using our pipeline, ren-
der them to generate comparable images (re-optimising the
render parameters for their midlines, see Appendix G). We
skip the scoring and masking and calculate Lpx. The results
(Fig. 8) show our method consistently produces shapes that
more closely match the raw images. The biggest advantage
over previous approaches is the improvement in robustness;
we recover 4 h 37min (ours) versus 1 h 32min [45] and
45min [63].

Fig. 9 shows the rendering parameters during a trial as
the worm moves in and out of focus in the different cam-
eras. Clearer images result in smaller values of σ and larger
values of ρ. The fluctuations in intensity ι are due in part to
the posture of the worm in relation to the camera; when it is
pointing directly towards the camera we see higher values
of ι used to capture the darker image observed and when the
shape is perpendicular to the camera we see lower values of

ι to emulate the worm’s transparency. All three parameters
work in tandem to produce the final effect.

7. Conclusion
We present a robust and reliable framework for the 3D

reconstruction of a microscopic, semi-transparent subject
moving through a fluid and evaluate against two other al-
gorithms and manually annotations. The key contribution
of our approach – constructing unique differentiable ren-
derings for each view – allows us to solve shape recon-
struction and camera parameter optimisation by direct im-
age comparison. This avoids feature extraction and corre-
spondence matching, and hence offers a powerful alterna-
tive when those approaches are not well-suited, e.g. due to
the variation in appearance between views.

Multi-view microscopic camera calibration, imaging
through fluids and parametric model fitting of semi-
transparent subjects are challenges that have received little
attention in the literature. While we have focused here on

8



constructing a curve to fit a microscopic worm from three
views, our method could be applied to the 3D reconstruc-
tion of arbitrary shape models at any scale using any num-
ber of viewpoints. Rendering points with adaptable super-
Gaussian functions presents an effective solution to trans-
parency and focal issues, but more generally, our results in-
dicate that our direct optimisation approach may offer an
effective alternative to contemporary methods for 3D ap-
proximation of generic objects from a limited number of
silhouette-like images.
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[60] Nils Wilhelm, Anna Vögele, Rebeka Zsoldos, Theresia
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Supplementary material
In this supplementary material we provide additional de-

tail for some of the steps in our method and include the
ranges and values for the various parameters and hyper-
parameters. In Appendix G we provide a more detailed
comparison between our method and the two other meth-
ods available. We report the results of an ablation study in
Appendix H and in Appendix I we describe the three sup-
porting videos (available here: https://doi.org/10.
6084/m9.figshare.22310650) that demonstrate the
method and showcase some of the results.

A. Geometric model: The Bishop frame
3D curves are typically expressed in the Frenet frame

TNB where T refers to the normalised tangent of the curve,
N is the ‘normal’ vector defined as the normalised arc-
length derivative of T and B is the ‘binormal’ vector ob-
tained through the cross product B = T × N . This frame
is defined along the curve using the Frenet-Serret formulas:

Ṫ = κN, (S16)

Ṅ = −κT + τB, (S17)

Ḃ = −τN, (S18)

where dot denotes the arc-length derivative d/ds and κ and
τ are scalar fields generally called curvature and torsion re-
spectively. For simplicity we leave the arc length parameter
s implicit in all equations.

A difficulty with the Frenet formulation is that the tor-
sion, τ , is strictly undefined for straight curves, or locally
wherever κ = 0. Zero (or near-zero) curvature is expected
in an animal that propagates sinusoidal waves along its body
and at these points we cannot guarantee a unique and con-
sistent parametrisation. To overcome this ambiguity we use
the Bishop frame [8], given by TM1M2 where T again
refers to the normalised tangent of the curve and M1,M2

form an orthogonal basis. The Bishop equations define how
the frame changes along the curve:

Ṫ = m1M1 +m2M2, (S19)

Ṁ1 = −m1T, (S20)

Ṁ2 = −m2T, (S21)

where m1,m2 are scalar fields analogous to κ, τ that ex-
press the curvature in the M1 and M2 directions respec-
tively.

While the Bishop frame improves the zero-curvature
problem, it does leave a degree of freedom in the choice of
the initial value of M1 (M1

init) that can point in any direc-
tion perpendicular to the initial tangent Tinit. Any rotation

of M1
init around Tinit will result in a different (m1,m2) rep-

resentation of the curvature, but this rotation angle can eas-
ily be recovered and different representations subsequently
aligned.

As Bishop describes in [8] (and expanded here for com-
pleteness) the two frames are related through their scalar
field components. κ can be recovered from m1,m2 using
Eqs. (S16) and (S19) as:

κ =

∣∣∣∣dTds
∣∣∣∣ = ∣∣m1M1 +m2M2

∣∣ = √
(m1)2 + (m2)2.

(S22)

To recover the torsion τ that describes the rotation of the
Frenet frame around N let θ be the angle between N and
M1, then

N = M1 cos θ +M2 sin θ, (S23)

B = −M1 sin θ +M2 cos θ, (S24)

m1 = κ cos θ and (S25)

m2 = κ sin θ. (S26)

Differentiating Eq. (S23) with respect to arc length and sub-
stituting from Eqs. (S20) and (S21) we have:

Ṅ = θ̇
(
−M1 sin θ +M2 cos θ

)
(S27)

+ T
(
m1 cos θ −m2 sin θ

)
(S28)

= θ̇B − κT (cos2 θ + sin2 θ) (S29)

=⇒ τ = θ̇. (S30)

Thus, in the words of Bishop, “κ and an indefinite integral∫
τds are polar coordinates for the curve (m1,m2)”.

B. Project: Pinhole camera model
The imaging setup is modelled using a triplet of pinhole

camera models with tangential and radial distortion [21].
A single pinhole camera model is used to project 3D points
into an image plane using a perspective transformation. The
15 parameters required for each camera model are sum-
marised in Table S3. These are divided into intrinsic, ex-
trinsic and distortion parameters. The intrinsic parameters
are (fx, fy, cx, cy), where fx and fy are the focal lengths
and (cx, cy) is a principal point usually set to the image
centre. The extrinsic parameters – angles (ϕ0, ϕ1, ϕ2) and
a translation vector t – define the extrinsic transformation
M = [R|t], where

R = Rz(ϕ0)Ry(ϕ1)Rx(ϕ2), (S31)

t =

t0
t1
t2

 (S32)
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and R is a rotation matrix composed of three axial rotations:

Rz(ϕ0) =

cosϕ0 − sinϕ0 0
sinϕ0 cosϕ0 0
0 0 1

 , (S33)

Ry(ϕ1) =

 cosϕ1 0 sinϕ1

0 1 0
− sinϕ1 0 cosϕ0

 and (S34)

Rx(ϕ2) =

1 0 0
0 cosϕ2 − sinϕ2

0 sinϕ2 cosϕ2

 . (S35)

The radial and tangential distortion coefficients, (k1, k2, k3)
and (p1, p2) respectively, complete the parametrisation.

Due to imperfections in the camera model (and possi-
bly environmental vibrations of the setup), using fixed pin-
hole camera model parameters yields results with errors
that vary over time and space (i.e. the accuracy depends
on the worm position). Allowing the camera parameters to
change freely between frames resolves the reconstruction
errors, but the problem becomes under-determined and in-
troduces drift into both the camera and curve parameters re-
sulting in incorrect tracking. To compensate for these errors
without allowing full freedom of movement we use fixed
pinhole camera parameters and introduce frame-dependent
variables that emulate relative movement between the cam-
eras, hence limiting drift and providing stable reconstruc-
tions.

To this end, the standard pinhole camera model is ex-
tended to include ηs = (dx, dy, dz), relative shifts along
the local coordinate axes (see Sec. 4.1). These parameters
approximate changes in the relative positions and rotations
of the cameras by applying pixel translations after the per-
spective transformation. Without loss of generality ηs can
be limited to one direction per camera, thus capturing only
relative shifts. The shifts used in camera index c are given
by (sx, sy)c where:

(sx, sy)0 = (dx, 0), (S36)
(sx, sy)1 = (0,−dy), and (S37)
(sx, sy)2 = (0, dz). (S38)

For 3D object point (X,Y, Z), the corresponding pro-
jected image point (u, v) is generated using the following

procedure (when z ̸= 0):x
y
z

 = R

X
Y
Z

+ t, (S39)

x′ =
x

z
+

sx
fx

, (S40)

y′ =
y

z
+

sy
fy

, (S41)

r2 = x′2 + y′2, (S42)

k = 1 + k1r
2 + k2r

4 + k3r
6, (S43)

x′′ = kx′ + 2p1x
′y′ + p2(r

2 + 2x′2), (S44)

y′′ = ky′ + p1(r
2 + 2y′2) + 2p2x

′y′, (S45)(
u
v

)
=

(
fxx

′′ + cx
fyy

′′ + cy

)
. (S46)

Note the inclusion of the shift parameters in Eqs. (S40)
and (S41).

C. Rendering parameters: Tapering
The rendering stage generates super-Gaussian blobs at

the projected image locations of each curve vertex (n). The
shape of the blobs in camera c depends on the optimisable
parameters: the scale σc, the intensity ιc and the exponent
used in the Gaussian ρc. To capture the worm shape we
taper the values of σc and ιc from their optimisable val-
ues along the middle 60% down to fixed minimum values
σmin and ιmin respectively at the ends. The tapered outputs
σ̄c, ῑc ∈ RN are calculated thus:

σ̄c,n =


σmin(1− 5n

N ) + σc
5n
N 0 ≤ n < N/5

σc N/5 ≤ n < 4N/5

σc(1− n−4N/5
N−4N/5 ) + σmin

n−4N/5
N−4N/5 4N/5 ≤ n < N,

(S47)

and

ῑc,n =


ιmin(1− 5n

N ) + ιc
5n
N 0 ≤ n < N/5

ιc N/5 ≤ n < 4N/5

ιc(1− n−4N/5
N−4N/5 ) + ιmin

n−4N/5
N−4N/5 4N/5 ≤ n < N.

(S48)

These values are used in Eq. (2).

D. Mask generation
The input images are masked to focus the pixel-errors

to a single region, local to the predicted curve, that is con-
sistent across all three views and excludes any interference
that does not correspond to the same mass. The masks
M ∈ R3×w×w are generated in a similar way to the ren-
ders R (see Sec. 4.2), but with a few notable differences.
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First, the blobs B are normalised and weighted by the rela-
tive scores,

B′
c,n =

Bc,n∑
i,j Bc,n

· Ŝn, (S49)

then combined by taking the maximum values as before,

M ′
c,i,j = max{B′

c,n,i,j}n=0,...,N−1, (S50)

and finally passed through a threshold:

Mc,i,j =

{
1 M ′

c,i,j ≥ Θ

0.2 M ′
c,i,j < Θ.

(S51)

For Θ = 0 we have M = 1 everywhere and no masking
occurs. For Θ ∼ 1 the mask shrinks around the blobs that
correspond to the highest scoring vertices, making M = 0.2
almost everywhere. In all our experiments we fix Θ = 0.1
as this appears to produce a good balance. Note that we
do not completely exclude the remaining points, but just re-
duce their intensity. This allows some gradient to flow from
outside the detection region which is especially important
in the early stages when none of the curve may be inter-
secting the correct pixel mass. It is also important to detach
the masks from the gradient computation at this stage oth-
erwise the curve will simply shrink and fade away from the
high-intensity pixels thus minimising pixel errors simply by
detecting fewer pixels.

E. Centre-shifting
The curve is periodically shifted along its length to cen-

tre it over the pixel mass in all three views. An unbal-
anced alignment can be seen from the score profile when
the centre-of-mass index of Ŝ (n̄) is not in the middle of the
curve (i.e. n̄ ̸= N/2). We can then shift the curve along
its length using n̄ as the new midpoint, removing vertices
from the low-scoring end and adding new vertices to the
high-scoring end. The low-scoring end will consequently
improve, and since there is no expectation that the new ver-
tices will match the images this typically means the high-
scoring end worsens; rectifying the imbalance.

To perform a centre-shift we calculate the centre of mass
of the score profile and the degree of imbalance as:

n̄ =

∑
n nŜn∑
n Ŝn

, and (S52)

ns = n̄−N/2. (S53)

Then we update the curvature by shifting the values and
decreasing linearly to zero at the ends. I.e. for ns > 0,

Kn ←

{
Kn+ns

0 ≤ n < N − ns,

KN−ns−1(1− N−ns−n+1
ns

) N − ns ≤ n < N,

(S54)

and similarly for ns < 0. Finally, new position and orien-
tation parameters are calculated from the adjusted midpoint
and updated curvatures using Eq. (1):

(P, T,M1)← F
(
Pn̄, Tn̄,M

1
n̄,K, l, n̄

)
. (S55)

This process is illustrated in Fig. 6.
Centre-shifting the curve occurs between gradient de-

scent optimisation steps. In practise, shifting after every
step quickly leads to instabilities as the new points are
not afforded the time required to align them with the im-
ages. Furthermore, it is unrealistic to expect a perfect
balance can be sustained and an unconstrained ns means
large shifts may be applied, possibly due to a change in
the camera parameters or some transient interference, that
would destroy extensive sections of the curve. To mitigate
these problems we only apply centre-shifting every α steps
when |ns| > βN and then restrict the shift size to γ (i.e.
ns ← min{ns, γ}). In our experiments we find values of
α ∈ [3, 6], β ∈ (0.05, 0.1) and γ ∈ [1, 2] provide the neces-
sary stabilisations (Table S6).

F. Optimisation
The non-optimisable parameter values and ranges that

are used in our experiments are outlined in Table S6. The
biggest factors affecting the choice of parameters are the
magnification and individual worm size – both of which
vary between experiments. These determine the required
image size, w, and inform the estimates for the length
bounds, lmin and lmax. The super-Gaussian blobs are gener-
ated in corresponding w×w images, so the minimum scales
and intensities at the tips, σmin and ιmin, must also change
accordingly with the image and worm size.

Table S7 lists the weighting coefficients used in the com-
bined loss calculation (Eq. (15)). Values of ωsm and ωt may
vary between experiments to capture the different dynamics
observed in the different environmental conditions (specifi-
cally, concentration of the gelatin). For example, when the
worm is deforming quickly (in low-viscosity experiments)
there are large postural changes between frames and there-
fore the temporal loss Lt is relatively big. In this case a
smaller value of ωt is used to prevent the reconstruction
lagging behind the worm. Similarly, when the worm is de-
forming slowly (in high-viscosity experiments) it frequently
forms tightly coiled postures in which case the smoothness
loss Lt is large and a smaller value for ωsm is more suit-
able. As discussed in the main text, when reconstructing
full sequences the initial curve and parameters are used for
the initial guesses to the subsequent frame. This preserves
head-tail orientation and consistency through complex ma-
noeuvres.

The learning rates are shown in Table S8 – these are fixed
for all experiments. Optimisable camera, curve and render
parameters are summarised in Tables S3 to S5 respectively.
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Figure S10. A comparison between the losses obtained when using
our renderer parameters for Yuval’s Worm-Tracker 3D (WT3D)
[63] and Salfelder et al.’s ‘reconst’ [45] midlines vs. the losses
obtained after re-optimising the renderer parameters to better suit
their midlines. Our method (MF) is shown for reference. We show
moving averages over 25 frames (1 s).

G. Comparisons with previous methods
In Fig. 8 we compare results against two existing meth-

ods [45,63]. These methods only provide projected midline
coordinates, so in order to use our pipeline to generate ren-
ders and calculate Lpx we need to provide renderer (blob)
parameters. We can use values found for our midlines, but
this introduces a bias towards our method as these parame-
ters are only optimal for our midlines. To mitigate against
this we initialise with our values but re-optimise for each
frame until convergence (keeping the curve and camera pa-
rameters fixed) to ensure optimal rendering parameters are
found for each midline. In Fig. S10 we show the effect of
the re-optimisation across the same clip. As expected, re-
optimisation reduces the loss for both methods, but the im-
provement is fairly marginal. The improved losses are used
for comparison in the main text.

In Table S1 we evaluate midline quality of all three meth-
ods against ground-truth manual annotations. This unbiased
evaluation (as only projected midline points are used) shows
our method to be more accurate. However, the sample size
is limited, more so as the other methods only provide results
for roughly half of the available annotations.

H. Ablation study
We demonstrate some of the effects of masking (Fig. 5),

centre-shifting (Fig. 6) and varying parameters (Movie 1)
throughout the main text. In Table S2 we present the results
from a more thorough ablation study conducted over a typ-
ical ∼ 5min clip to clarify the importance of the different
components of our method.

Optimisable camera (a), rendering parameters (b) and
centre-shifting (c) yield considerable benefit; setting
ωsc > 0 (d) and regularisation (f) incur a marginal cost
(L̃ > 0.99) but recover poses with high transparency (d) and

Method # poses Score Total

MF (ours) 487 1.53 (0.51) 4 h 37min

reconst
[45]

226 1.54 (0.69) 1 h 32min

MF (ours) 226 1.34 (0.53)

WT3D [63] 237 2.64 (0.92) 45min
MF (ours) 237 1.46 (0.59)

Table S1. Mean (and standard deviation) pixel distances between
predicted points and hand-annotated points (see Fig. 7). Total
refers to the overall reconstructed duration using each method.

ensure realistic (smooth) poses (f); finally, masking (e) in-
curs a small cost but provides robustness to sequences with
interference (e.g. Movie 1).

Variant < Lpx > L̃ =< Lpx > / Ref

Ref 3.99e−3 (1.13e−3) 1.000

a 7.21e−3 (1.97e−3) 1.807
b 4.64e−3 (1.42e−3) 1.163
c 4.29e−3 (1.71e−3) 1.075
d 3.99e−3 (1.12e−3) 1.000
e 3.69e−3 (9.00e−4) 0.925
f 3.96e−3 (1.08e−3) 0.992

Table S2. Ablation results (mean (and standard deviation) pixel er-
rors and normalised mean) across a typical 7200-frame clip. Vari-
ants: a) no camera parameter optimisation, b) rendering param-
eters (σ, ι, ρ) fixed to averages from the reference results, c) no
centre-shifting, d) no scores-loss (ωsc = 0), e) no input masking,
f) no regularisation losses (ωsm = ωt = 0).

I. Supplementary results
Three supporting videos are available here: https://

doi.org/10.6084/m9.figshare.22310650.
In the accompanying Movie 1, the effects of adjusting

some of the parameters listed in Tables S6 and S7 on the
solution are demonstrated. In this video we show the opti-
misation process using paired examples. The same frame
and randomised initial guess are used for each pair and
the optimisation is run for a fixed 2000 steps. The frames
are selected to demonstrate a range of challenging condi-
tions – especially for achieving convergence from a random
guess. The first of each pair shows successful optimisation
using parameter values in the ranges specified in Tables S6
and S7. The second of each pair shows the effect that chang-
ing one of the parameters has on the converged solution.

We include two further videos demonstrating examples
of both successful and less-successful sequence reconstruc-
tions. In Movie 2 we showcase successful examples. First,
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when the worm is well resolved in all three views. Next,
when there is interference from dirt or bubbles and/or poor
focus in one or more views. Lastly, through complex coiling
manoeuvres that include significant self-occlusion.

The limitations of our method are illustrated in Movie
3. These examples, taken from otherwise successful recon-
structions, demonstrate that when significant loss of focus
is combined with coiling, heavily occluded, postures the re-
construction can fail. The exact degree of failure is difficult
to ascertain for the exact same reasons and only by watch-
ing the full sequences can we be convinced that the recon-
struction is incorrect. This suggests that incorporating more
temporal information may help to resolve these fail-cases,
but we leave this for future investigation.
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Parameter Purpose Domain

fx,fy Focal lengths R+

(cx, cy) Principal image point R+

ϕ0, ϕ1, ϕ2 Rotation angles [0, 2π)
t Translation (position) vector R3

(k1, k2, k3) Radial distortion coefficients R+

(p1, p2) Tangential distortion coefficients R+

ηs Relative shifts R3

Table S3. Camera model parameters. With the exception of ηs these are defined for each camera. ηs is shared between the models as per
Eqs. (S36) to (S38).

Parameter Purpose Domain

P 3D curve vertex coordinates RN×3

T Normalised curve tangent vectors at each vertex location RN×3

M1 Normalised curvature orientation vectors at each vertex location RN×3

K Vector curvature RN×2

l Curve length (lmin, lmax)

Table S4. Curve and Bishop frame parameters.

Parameter Purpose Domain

σc
Standard deviation of the super-Gaussian blobs along the untapered middle
60% of the worm in camera c

[σmin,∞)

ιc
Intensity scaling factor for the super-Gaussian blobs along the untapered
middle 60% of the worm in camera c

[ιmin,∞)

ρc Exponent used in the super-Gaussian blobs in camera c (0,∞)

Table S5. Rendering parameters.
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Parameter Purpose Value/Range

w (Square) image size 200–350 px
N Number of discrete curve vertices 128
lmin Minimum curve length 0.5–1 mm
lmax Maximum curve length 1–2 mm
kmax Maximum curvature constraint 3 osculating circles
σmin Standard deviation of the super-Gaussian functions at the tips 2–4 px
ιmin Intensity scaling factor of the super-Gaussian functions at the tips 0.15–0.3
Θ Mask threshold 0.1
α Frequency of centre-shift adjustments (number of gradient descent steps) 3–6 steps
β Centre-shift adjustment sensitivity 0.05–0.1
γ Maximum centre-shift adjustment 1–2 vertices

Table S6. Non-optimisable parameter values and ranges used in our experiments. Listed in the order they appear in the text.

Parameter Purpose Value/Range

ωpx Weighting of the pixel loss Lpx 0.1
ωsc Weighting of the scores loss Lsc 0.01
ωsm Weighting of the smoothness loss Lsm 10–100
ωt Weighting of the temporal loss Lt 10–100
ωi Weighting of the intersections loss Li 0.1–1

Table S7. Weighting coefficients for the different loss terms.

Parameter Purpose Value

λp Learning rate for the curve parameters {P, T,M1,K, l} 1e−3
λr Learning rate for the rendering parameters {σ, ι, ρ} 1e−4
λη Learning rate for the camera parameters η 1e−5
λmin Minimum learning rate for all parameters 1e−6

Table S8. Learning rates for the different parameter groups.
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